A METRICS System for Design Process Optimization - PowerPoint PPT Presentation

1 / 24
About This Presentation
Title:

A METRICS System for Design Process Optimization

Description:

Task sequence: T1, T2, T1, T2, T3, T3, T3, T4, T2, T1, T2, T4. Chip Design Flow Example ... Optimization of Incremental Multilevel FM Partitioning ... – PowerPoint PPT presentation

Number of Views:105
Avg rating:3.0/5.0
Slides: 25
Provided by: carl301
Category:

less

Transcript and Presenter's Notes

Title: A METRICS System for Design Process Optimization


1
A METRICS System for Design Process Optimization
  • Andrew B. Kahng and Stefanus Mantik
  • UCSD CSE and ECE Depts., La Jolla, CA
  • UCLA CS Dept., Los Angeles, CA

2
Purpose of METRICS
  • Standard infrastructure for the collection and
    the storage of design process information
  • Standard list of design metrics and process
    metrics
  • Analyses and reports that are useful for design
    process optimization

METRICS allows Collect, Data-Mine, Measure,
Diagnose, then Improve
3
METRICS System Architecture
4
XML Example
ltMETRICS_LISTgt ltMETRIC PID134 FID22
TID47gt ltNAMEgtTOTAL_WIRELENGTHlt/NAMEgt ltVALUE
gt14250347lt/VALUEgt ltTYPEgtINTEGERlt/TYPEgt ltTIMEST
AMPgt010312220512lt/TIMESTAMPgt lt/METRICgt ltMETRIC
PID134 FID22 TID47gt ltNAMEgtTOTAL_CPU_TIM
Elt/NAMEgt ltVALUEgt2150.28lt/VALUEgt ltTYPEgtDOUBLElt/
TYPEgt ltTIMESTAMPgt010312220514lt/TIMESTAMPgt lt/ME
TRICgt lt/METRICS_LISTgt
5
Transmitter Examples
  • Wrapper-based transmitter
  • !/usr/local/bin/perl -w
  • TOOL 0
  • PID initProject
  • FID initFlow -pid PID
  • TID initToolRun -pid PID -fid FID
  • system sendMetrics TOOL_NAME TOOL\ STRING
  • while(ltINgt)
  • system sendMetrics NAME VALUE\ TYPE
  • system terminateToolRun
  • system terminateFlow -pid PID -fid FID
  • system terminateProject -pid PID
  • exit 0
  • API-based transmitter
  • include transmitter.h
  • int main(int argc, char argv)
  • Transmitter MTR
  • MTR.initProject()
  • MTR.initFlow()
  • MTR.initToolRun()
  • MTR.sendMetrics(TOOL_NAME, argv0,\
    STRING)
  • MTR.sendMetrics(Name, Value, Type)
  • MTR.terminateToolRun()
  • MTR.terminateFlow()
  • MTR.terminateProject()
  • exit 0

6
Example Reports
CPU_TIME 12 0.027 NUM_CELLS Correlation 0.93
7
METRICS Server
Apache
Reports
Reporting Servlets
Oracle 8i
Requests
Transmitter Servlets
8
Open Source Architecture
  • METRICS components are industry standards
  • e.g., Oracle 8i, Java servlets, XML, Apache web
    server, PERL/TCL scripts, etc.
  • Custom generated codes for wrappers and APIs are
    publicly available
  • collaboration in development of wrappers and APIs
  • porting to different operating systems
  • Codes are available at http//vlsicad.cs.ucla.edu
    /GSRC/METRICS

9
METRICS Standards
  • Standard metrics naming across tools
  • same name same meaning, independent of tool
    supplier
  • generic metrics and tool-specific metrics
  • no more ad hoc, incomparable log files
  • Standard schema for metrics database
  • Standard middleware for database interface
  • For complete current lists see
    http//vlsicad.cs.ucla.edu/GSRC/METRICS

10
Generic and Specific Tool Metrics
Partial list of metrics now being collected in
Oracle8i
11
Flow Metrics
  • Tool metrics alone are not enough
  • Design process consists of more than one tool
  • A given tool can be run multiple times
  • Design quality depends on the design flow and
    methodology (the order of the tools and the
    iteration within the flow)
  • Flow definition
  • Directed graph G (V,E)
  • V ? T ? S, F
  • T ? T1, T2, T3, , Tn (a set of tasks)
  • S ? starting node, F ? ending node
  • E ? Es1, E11, E12, , Exy (a set of edges)
  • Exy
  • x lt y ? forward path
  • x y ? self-loop
  • x gt y ? backward path

12
Flow Example
S
T1
T2
T3
Optional task
T4
F
Task sequence T1, T2, T1, T2, T3, T3, T3, T4,
T2, T1, T2, T4
13
Flow Tracking
Task sequence T1, T2, T1, T2, T3, T3, T3, T4,
T2, T1, T2, T4
14
Chip Design Flow Example
  • Simple chip design flow
  • T1 synthesis technology mapping
  • T2 load wireload model (WLM)
  • T3 pre-placement optimization
  • T4 placement
  • T5 post-placement optimization
  • T6 global routing
  • T7 final routing
  • T8 custom WLM generation

15
Optimization of Incremental Multilevel FM
Partitioning
  • Motivation Incremental Netlist Partitioning
  • Given initial partitioning solution, CPU budget
    and instance perturbations (?I)
  • Find number of parts of incremental partitioning
    and number of starts
  • Ti incremental multilevel FM partitioning
  • Self-loop ? multistart
  • n ? number of breakups (?I ?1 ?2 ?3 ...
    ?n)

16
Flow Optimization Results
  • If (27401 lt num edges ? 34826) and (143.09 lt cpu
    time ? 165.28) and (perturbation delta ? 0.1)
    then num_inc_parts 4 and num_starts 3
  • If (27401 lt num edges ? 34826) and (85.27 lt cpu
    time ? 143.09) and (perturbation delta ? 0.1)
    then num_inc_parts 2 and num_starts 1
  • ...

17
Datamining Integration
Inter-/Intranet
DM Requests
SQL
Results
Tables
Database
Datamining Interface
Datamining Tool(s)
Tables
Tables
SQL
Results
18
Categories of Data for DataMining
  • Design instances and design parameters
  • attributes and metrics of the design instances
  • e.g., number of gates, target clock frequency,
    number of metal layers, etc.
  • CAD tools and invocation options
  • list of tools and user options that are available
  • e.g., tool version, optimism level, timing driven
    option, etc.
  • Design solutions and result qualities
  • qualities of the solutions obtained from given
    tools and design instances
  • e.g., number of timing violations, total tool
    runtime, layout area, etc.

19
Possible Usage of DataMining
  • Design instances and design parameters
  • CAD tools and invocation options
  • Design solutions and result qualities
  • Given ? and ?, estimate the expected quality of ?
  • e.g., runtime predictions, wirelength
    estimations, etc.
  • Given ? and ?, find the appropriate setting of ?
  • e.g., best value for a specific option, etc.
  • Given ? and ?, identify the subspace of ? that is
    doable for the tool
  • e.g., category of designs that are suitable for
    the given tools, etc.

20
DM Results QPlace CPU Time
  • If (num nets ? 7332) then CPU time 21.9
    0.0019 num cells 0.0005 num nets 0.07 num
    pads - 0.0002 num fixed cells
  • If (num overlap layers 0) and (num cells ?
    71413) and (TD routing option false) then CPU
    time -15.6 0.0888 num nets - 0.0559 num cells
    - 0.0015 num fixed cells - num routing layer
  • ...

21
Testbed Metricized Cadence PKS Flow
M E T R I C S
BuildGates
22
NELSIS Flow Manager Integration
  • Flow managed by NELSIS

23
Issues
  • Tool interface each tool has unique interface
  • Security proprietary and confidential
    information
  • Standardization flow, terminology, data
    management, etc.
  • Cost of metrics collection how many data are too
    many?
  • Other non-EDA tools LSF, License Manager, etc.
  • Social big brother, collection of social
    metrics, etc.
  • Bug detection report the configuration that
    trigger the bugs, etc.

24
Conclusions
  • Metrics collection should be automatic and
    transparent
  • API-based transmitter is the best approach
  • Ongoing work with EDA, designer communities to
    identify tool metrics of interest
  • users metrics needed for design process
    insight, optimization
  • vendors implementation of the metrics
    requested, with standardized naming / semantics
Write a Comment
User Comments (0)
About PowerShow.com