Newton - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Newton

Description:

Rocket and ignited gases: M(rocket) x V(rocket) = m(gases) x v(gases) ... 1/6 of g(Earth); objects on the Moon fall at a rate six times slower than on the Earth ... – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 15
Provided by: AnilPr
Category:
Tags: moon | newton | rocket

less

Transcript and Presenter's Notes

Title: Newton


1
Newton Three Laws of Motion
  • Inertia
  • F ma
  • Action Reaction

2
Newtons Laws of Motion
  • Law of Inertia A body continues in state of
    rest or motion unless acted on by an external
    force Mass is a measure of inertia
  • Law of Acceleration For a given mass m, the
    acceleration is proportional to the force applied
  • F m a
  • Law of Action equals Reaction For every action
    there is an equal and opposite reaction momemtum
    (mass x velocity) is conserved

3
Velocity, Speed, Acceleration
  • Velocity implies both speed and direction speed
    may be constant but direction could be changing,
    and hence accelerating
  • Acceleration implies change in speed or
    direction or both
  • For example, stone on a string being whirled
    around at constant speed direction is constantly
    changing therefore requires force

4
Ball Swung around on a String
Same Speed, (in uniform circular motion) Changing
Direction (swinging around the circle)
5
Donut Swung around on a String
6
Conservation of momemtumaction equal reaction
  • The momemtum (mv) is conserved before and after
    an event
  • Rocket and ignited gases
  • M(rocket) x V(rocket) m(gases) x v(gases)
  • Two billiard balls
  • m1 v1 m2 v2 m1 v1 m2 v2
  • v1,v2 velocities before collision
  • v1,v2 velocities after collision
  • Example you and your friend (twice as heavy)
    on ice!

7
Action Reaction
Equal and Opposite Force from the Table
Net Force is Zero, No Net Motion
8
Acceleration due to gravity
  • Acceleration is rate of change of speed or
    direction of motion with time
  • Acceleration due to Earths gravity
  • g 9.8 m per second per second, or 32 ft/sec2
  • Speed in free-fall
  • T (sec) v (m/sec) v
    (ft/sec)
  • 0 0
    0
  • 1 9.8
    32
  • 2 19.6
    64
  • 3 29.4
    96
  • 60 mi/hr 88 ft/sec (between 2 and 3
    seconds)

9
Galileos experiment revisited
  • What is your weight and mass ?
  • Weight W is the force of gravity acting on a
    mass m causing acceleration g
  • Using F m a, and the Law of Gravitation
  • W m g G (m MEarth) /R2
  • (R Radius of the Earth)
  • The mass m of the falling object cancels out
    and does not matter therefore all objects fall
    at the same rate or acceleration
  • g GM / R2
  • i.e. constant acceleration due to gravity
    9.8 m/sec2

10
Galileos experiment on gravity
  • Galileo surmised that time differences between
    freely falling objects may be too small for human
    eye to discern
  • Therefore he used inclined planes to slow down
    the acceleration due to gravity and monitor the
    time more accurately

v
Changing the angle of the incline changes the
velocity v
11
g on the Moon
  • g(Moon) G M(Moon) / R(Moon)2
  • G 6.67 x 10-11 newton-meter2/kg2
  • M(Moon) 7.349 x 1022 Kg
  • R(Moon) 1738 Km
  • g (Moon) 1.62 m/sec/sec
  • About 1/6 of g(Earth) objects on the Moon
    fall at a rate six times slower than on the Earth

12
Escape Velocity and Energy
  • To escape earths gravity an object must have
    (kinetic) energy equal to the gravitational
    (potential) energy of the earth
  • Kinetic energy due to motion
  • K.E. ½ m v2
  • Potential energy due to position and force
  • P.E. G m M(Earth) / R
  • (note the similarity with the Law of
    Gravitation)
  • Minimum energy needed for escape K.E. P.E.
  • ½ m v2 G m M / R
  • Note that the mass m cancels out, and
  • v (esc) 11 km/sec 7 mi/sec 25000 mi/hr
  • The escape velocity is the same for all
    objects of mass m

13
Object in orbit ? Continuous fall !
Object falls towards the earth at the same rate
as the earth curves away from it
14
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com