Title: Nives Klopcar and Jadran Lenarcic
 1Kinematical Shoulder Complex Model
- Nives Klopcar and Jadran Lenarcic
Jožef Stefan Institute, Department of Automatics, 
Biocybernetics and Robotics Jamova 39, 1000 
Ljubljana, Slovenia 
5th International Shoulder Complex Conference, 
Portugal, 27  28 August, 2004 
 21. Introduction 
 3Biomechanical musculoskeletal model of human 
upper limb (W. Maurel, 1996)
W. Maurel, D. Thalmann, P. Hoffmeyer, P. Beylot, 
P. Gingins, P. Kalra, N. M. Thalmann, A 
Biomechanical Musculoskeletal Model of Human 
Upper Limb for Dynamic Simulation, Proc. 7th 
Eurographics Workshop and Animation and 
Simulaton, Wien, Sept. 1996. 
1. Introduction 
 4W. Maurel, D. Thalmann, P. Hoffmeyer, P. Beylot, 
P. Gingins, P. Kalra, N. M. Thalmann, A 
Biomechanical Musculoskeletal Model of Human 
Upper Limb for Dynamic Simulation, Proc. 7th 
Eurographics Workshop and Animation and 
Simulaton, Wien, Sept. 1996. 
1. Introduction 
 51. Introduction 
 6Shoulder girdle measurements
-  OPTOTRAK system 
-  active markers 
-  5 male and 5 female 
-  (healthy, right-handed)
-  shoulder girdle 
-  segment SG 
-  humerus segment GE 
-  humerus elevation 
-  4 planes 
-  anterior/posterior 
-  bilateral/unilateral 
2. Methods 
 7Shoulder rhythm
BILATERAL  
 0.3 j, 
 j lt 0 jpr 0, 
 0 ltj lt 70 - 0.21 j  14.7, 
 70ltj 
 - 0.23 j, j 
lt 0 jed  0, 0 
ltj lt 30 0.31 j  9.3, 
30ltj 
3. Results 
 8Shoulder rhythm
BILATERAL  
 0.3 j, 
 j lt 0 jpr 0, 
 0 ltj lt 70 - 0.21 j  14.7, 
 70ltj 
 - 0.23 j, j 
lt 0 jed  0, 0 
ltj lt 30 0.31 j  9.3, 
30ltj 
3. Results 
 9Shoulder rhythm
BILATERAL  
 0.3 j, 
 j lt 0 jpr 0, 
 0 ltj lt 70 - 0.21 j  14.7, 
 70ltj 
 - 0.23 j, j 
lt 0 jed  0, 0 
ltj lt 30 0.31 j  9.3, 
30ltj 
3. Results 
 10Shoulder girdle length changes
 do  SGf0 dRO  SGf 
3. Results 
 11Shoulder girdle length changes
BILATERAL
 dSG/do  - 0.0064 jed  1
 dSG/do  0.0028 jpr  1
3. Results 
 12Shoulder girdle length changes
BILATERAL
 dSG/do  -1.9 . 10-5j 2  4 . 10-4j 1
3. Results 
 13Shoulder girdle length changes
UNILATERAL
 dSG/do  -1.6 . 10-5j 2  3 . 10-4j 1
3. Results 
 14Shoulder girdle angular motion
UNILATERAL
3. Results 
 15Shoulder girdle angular motion
UNILATERAL
3. Results 
 16Shoulder girdle angular motion
UNILATERAL
 ?je  - 0.1 j  30
 ?jd  0.01 j - 14
 ?jp  - 0.09 j  30
 ?jr  0.07 j - 26
3. Results 
 17Shoulder girdle angular motion
UNILATERAL
?jed 2.1 . 10-3j 2 - 4 . 10-2j -14, 1.3 . 
10-3j 2 - 3 . 10-2j  30
?jpr -1.2 . 10-3j 2  0.15 j - 26, 2.2 . 10-3j 
2 0.15 j  30
3. Results 
 18Kinematical shoulder complex model
rE  Red Rpr T . rSG  RA RF RR . rGE
Red Rot(y, jed) Rpr  Rot(z, jpr) T  Trans (x, 
dSG/do) RA Rot(y, jA) RF Rot(x, jF) RR Rot(z, 
jR)
rSG ( dSG, 0, 0)T rGE  (0, 0, - dGE)T
dSG(H), dGE(H) H...subject height
D. A. Winter, Biomechanics and Motor Control of 
Human Movement, A Wiley-Interscience Publication, 
University of Waterloo, Canada, 1990.
3. Results 
 19Elbow points calculation
rE  Red Rpr T . rSG  RA RF RR . rGE
-  abduction/adduction jAm, jAM 
-  flexion/retroflexion jFm  jA/3, jFM - jA/6 
-  internal/external rotation 
-  jRm7jA/9 - jF/9  2jAjF/810, 
- jRM  4jA/9  5jF/9  5jAjF /810 
- j  acos (cos jA ? cos jF) 
-  - shoulder rhythm, shoulder girdle length 
 changes
-  jed, jpr and dSG/do 
-  - angular motion range 
-  Dje, Djd, Djp and Djr
Lenarcic, J., Umek, A., 1994. Simple model of 
human arm reachable workspace. IEEE Transactions 
on Systems, Man, and Cybernetics 24, 1239-1246.
3. Results 
 20Conclusions
-  shoulder girdle elevation and retraction is 
-  accompanying humeral elevation (shoulder 
 rhythm)
-  shoulder girdle changes length as a quadratic 
 function
-  during humeral elevation 
-  shoulder girdle angular motion range is the 
 biggest in
-  non-elevated humerus position, it lessens 
 during
-  humeral elevation and it halves in humerus 
 maximal
-  elevated position 
-  difference between bilateral and unilateral 
 humeral
-  elevation 
-  kinematical shoulder complex model
21(No Transcript)