Title: Analytical Relations for the Transfer Equation Mihalas 2
1Analytical Relations for the Transfer Equation
(Mihalas 2)
- Formal Solutions for I, J, H, KMoments of the TE
w.r.t. AngleDiffusion Approximation
2Schwarzschild Milne Equations
Specific intensity Mean intensity Eddington
flux Pressure term
3Semi-infinite Atmosphere Case
- Outgoing radiation, µgt0
- Incoming radiation, µlt0
z
?0
4Mean Field J (Schwarzschild eq.)
5(No Transcript)
6F, K (Milne equations)
7Operator Short Forms
J ?
F F
K ¼ ?
f(t) S(t) Source function
8Properties of Exponential Integrals
9Linear Source FunctionSabt
- J
- For large t
- At surface t 0
10Linear Source FunctionSabt
- H ¼F(abt)
- For large t, Hb/3 (gradient of S)
- At surface t 0
11Linear Source FunctionSabt
- K ¼ ?(abt)
- Formal solutions are artificial because we
imagine S is known - If scattering is important then S will depend on
the field for example - Coupled integral equations
12Angular Moments of the Transfer Equation
- Zeroth moment and one-D case
13Radiative Equilibrium
14Next Angular Moment Momentum Equation
- First moment and one-D case
15Next Angular Moment Momentum Equation
- Radiation force (per unit volume) gradient of
radiation pressure - Further moments dont help need closure to
solve equations - Ahead will use variable Eddington factorf K /
J
16Diffusion Approximation (for solution deep in
star)
17Diffusion Approximation Terms
18Only Need Leading Terms
19Results
- K / J 1/3
- Flux diffusion coefficient x T gradient
- Anisotropic term small at depth