PETE 628 Lesson 6 - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

PETE 628 Lesson 6

Description:

Casing cemented up from EOC. 14o/100 ft. Pf = 0.62 psi/ft. 5 1/2' ATM. 34 ... Production casing cemented up from EOC through a stage collar. Cadomin gas well - Alberta ... – PowerPoint PPT presentation

Number of Views:301
Avg rating:3.0/5.0
Slides: 55
Provided by: jch103
Category:
Tags: pete | cemented | lesson

less

Transcript and Presenter's Notes

Title: PETE 628 Lesson 6


1
PETE 628Lesson 6
  • Build Curve Design

Petroleum Engineering Department Texas AM
University
2
Outline
  • Dogleg severity
  • Single radius build curve - - No tangent
    section
  • Complex tangent build curve - - Unequal
    build rates)
  • The Ideal build curve
  • Tangent section inclination...

3
Outline - contd
  • Casing and drilling fluid programs
  • Positive displacement mud motors (PDMs)
  • Bit side forces - change in trajectory
  • READ to page 46 in the TEXTBOOK
  • HW 3 - Max. Tool Length - due 02-10-04

4
Dogleg Angle
b
5
Dogleg Angle
  • Total (3D) change in hole angle between two
    survey points in a borehole
  • dogleg angle
  • Ref. API Bulletin D20

6
Dogleg Angle...
1
  • Example
  • Point 1 Point 2
    Change
  • I1 20o I2 30o ?I 10o
  • A1 70o A2 130o ?A 60o
  • MD1 10,200 MD2 10,350 ?MD 150

2
7
Calculation of DL Angle

? dogleg angle
8
Dogleg Severity, d
  • Dogleg severity,
  • ???????
  • ????? ? (100/?MD) 25.93 (100/150)
  • 17.29 deg/100 ft
  • ( The dogleg severity is the dogleg angle over a
    measured depth of 100 ft )

9
Dogleg Severity - contd
  • In general,
  • the dogleg severity,

10
Single Radius Build Curve
  • Problem Where should the KOP be located if
    the TVD at EOC is 10,000 ft, and there is no
    tangent section ?
  • BUR 15 deg./100 ft
  • Hole angle at start of build 5o
  • Hole angle at end of build 92o

11
Single Radius Build Curve, contd
R

I1
I2
?T
I1
R
I2
12
Single Radius Build Curve - contd
  • R 18,000/(??BUR) 382 ft (BUR 15)
  • ?T R (sin I2 - sin I1)
  • TKOP Tb - ?T
  • 10,000 - 382 (sin 92 - sin 5)
  • TKOP 9,652 ft

13
Complex Tangent Build Curve
  • Problem Determine the depth of the kickoff
    point for a complex tangent build curve if
  • Depth of target 9,200 ft
  • First BUR 15 deg/100 ft
  • Second BUR 12 deg/100 ft
  • Tangent angle 45 deg.
  • Length of tangent 120 ft
  • I1 0 deg I2 90 deg

14
Complex Tangent Build Curve, contd

R1
KOP
R2
Ltan
45
EOC
15
Complex Tangent Build Curve, contd

R1
0o
R2
Ltan
90o
EOC
16
Complex Build Curve - Solution
  • R1 18,000/(? BUR1) 18,000/15 ? 382 ft
  • R2 18,000/(? BUR2) 18,000/12 ? 477 ft
  • First build section,
  • ????TB1 R1 (sin I2 - sin I1)
  • 382 (sin 45 - sin 0 ) 270 ft
  • Tangent section,
  • ????Ttan L cos I 120 cos 45 85 ft

17
Complex Curve - Solution - contd
  • Second build section,
  • ????TB2 R2 (sin I2 - sin I1)
  • 477 (sin 90 - sin 45) 140 ft
  • TKOP TVD - ?TB1 - ?Ttan - ?TB2
  • 9,200 - 270 - 85 - 140
  • TKOP 8,705 ft

18
Complex Tangent Build Curve, contd

8,705
R1 382
0o
270
R2 477
Ltan
85
90o
EOC
140
Depth of target 9,200 ft
19
The Ideal Build Curve
R1
R2
20
The Ideal Build Curve - contd
  • First build section
  • Design for maximum build rate based on
    probable range
  • Determine ACTUAL build rate
  • Second build Section
  • Reduce build rate as needed to hit target by
    changing tool face angle

21
Tool Face Angle (?)
? 0
  • Example
  • 20o build motor
  • When tool face angle is zero,
  • Angle build rate 20 deg./100 ft

22
Tool Face Angle - contd
? -30
? 30
  • When tool face angle 30 deg.
  • Angle build rate 20 cos 30 17.3 deg/100 ft

23
Optimum Tangent Angle
where K1 18,000/p for BUR in deg/100
ft
REF TEXT p.26
24
Opt. Tangent Angle - contd
  • Itan inclination of tangent, deg.
  • If final well inclination, deg.
  • BURMax maximum expected BUR
  • BURMin minimum expected BUR
  • Tb base of target
  • Tt top of target
  • NOTE K1 1,719 if BUR deg./30 m

25
Target TVD at EOC
  • where,
  • Ttgt target TVD at EOC
  • BURExp expected or planned BUR

REF TEXT p.26
26
Tangent Section - Example
  • Assumptions
  • If 86 deg.
  • BURMax 12 deg./100 ft
  • BURMin 10 deg./100 ft
  • BURExp 11 deg./100 ft
  • K1 18,000/??? 5,729.58
  • Base of target at TVD, Tb 10,020 ft
  • Top of target at TVD, Tt 10,000 ft

27
Optimum Tangent Angle
  • Inclination of tangent section,
  • Itan 52.01 deg.


28
Target TVD at EOC
  • Ttgt 10,009.09 ft

29
Basic horizontal well casing programs
  • No intermediate casing
  • Intermediate casing to KOP
  • Intermediate casing to EOC

30
No Intermediate Casing

Bakken Shale North Dakota TVD - 3,250 m Lateral
- 762 m
245 mm
SALTS
14o/30 m
90o
140 mm
31
Intermediate Casing to KOP

Swan Hills Alberta Jean Marie N.E. B.C.
245 mm
Sloughing Shale Lost Circulation Differential
Sticking
18o/30 m
178 mm
114 mm
32
Intermediate Casing to EOC

Alberta - Deep Basin TVD - 2,780 m Lateral -
275 m
273 mm
Sloughing Shales
20o/30 m
90o
114 mm
33
Casing and Drilling Fluid Program

Bakken Oil Well Use weighted invert oil mud
(oil is continuous phase) Casing cemented up
from EOC
9 5/8
Flowing Salt Zones
14o/100 ft
5 1/2
Pf 0.62 psi/ft
34
Casing and Drilling Fluid Program
10 3/4

Cadomin Gas Well Use weighted invert mud to csg.
point. KCl-Water-Polymer mud in horizontal
Sloughing Shales Overpressured gas
20o/100 ft
7 5/8
0.35 psi/ft
4 1/2
35
Csg. and drilling fluid program - contd
  • Bakken oil well - N. Dakota
  • Lateral hole 3,000 ft
  • Production casing cemented up from EOC through a
    stage collar
  • Cadomin gas well - Alberta
  • No cemented liner
  • Two stage cement job on intermediate casing

36
Marker Beds
  • Some marker beds will be continuous to a control
    well, and some will be discontinuous.
  • The continuous marker may change depth relative
    to the target.
  • Markers with isopachs constant to the zone are
    the most desirable ...

37
Continuous vs. discontinuous marker beds.
Horizontal Well
Vertical Control Well
Horizontal Well
SHALE MARKER (continuous)
COAL - (discontinuous)
TARGET
38
Marker bed dip angle is unequal to target dip
angle
t1 t2
Vertical Control Well
Horizontal Well
Horizontal Well
Itarget Imarker SHALE MARKER

t2
t1
TARGET
39
Faults in uphole marker beds
Horizontal Well
Vertical Control Well
Horizontal Well

C
C
A
A
tAM tAM ? tAV tAV
40
Discontinuous reservoirs
LATERAL VARIATION

VERTICAL VARIATION
FAULTS
41
Target Zone is at Expected TVD
BUR 5o/100 ft
BUR 20o/100 ft

TARGET ZONE
EOC AT 90o TOP OF TARGET ZONE (from samples)
42
Target Zone at Lower TVDdue to Formation Dip
43
Cross Section of Mud Motors showing different
Lobe Patterns

STATOR
ROTOR
High Speed - Low Torque Motors
44
Cross Section of Mud Motors showing different
Lobe Patterns

HIGH TORQUE - LOW SPEED MOTORS
45
Conventional single-lobe downhole Mud Motor
DUMP VALVE
STATOR

ROTOR
UNIVERSIAL JOINT SHAFT
THRUST and RADIAL BEARINGS

DRIVE SHAFT
BIT
46
Medium Radius Angle Build Assembly
NON-MAGNETIC DRILL COLLAR

MOTOR
17.3
CONNEC.-ROD HOUSING
3.2
BEARING ASSEMBLY
BENT SUB
6.3
MOTOR ASSEMBLY 26.8
47
Combined Effect of Bent Sub and Bent Motor

BENT SUB
?1 1.5o

BENT MOTOR

?2 2.5o ? ?1 ?2 4.0o
48
Bending Stresses at Kickoff
?
49
Bending stresses at equilibrium
50
Lateral forces on bit from kickoff to
equilibrium

FORCE ON BIT 1,000s of lbf

FEET DRILLED (MD)
51
Kickoff in a soft homogeneous formation

R1
High Initial Dogleg BUR gtgt BUREXP
BUREXP REXP
Bottomhole Assembly will reduce Curvature
52
Kickoff in a soft formation underlying a hard
formation

High Dogleg and Contact Point
Very Hard Siltstone
Sloughing
Very Soft Coal
Bottomhole Assembly will NOT wipe out Dogleg
53
Bit shank wear in abrasive formation
Shank

Slow Bit Recipro.
Shank Wear
Bit Contact Force
Bit Cone

Gauge Cutting Structure
Abrasive, Hard Formation
54
Dogleg Angle Equations
Write a Comment
User Comments (0)
About PowerShow.com