Title: Generalized spline subdivision
1Generalized spline subdivision
Jorg Peters SurfLab (Purdue,UFL)
- Polynomial Heritage
- Computing Moments
- Shape and Eigenvalues
2Polynomial heritageof generalized spline
subdivision
3Polynomial heritageof generalized spline
subdivision
- Increasing regions are regular points and
faces have standard valence
4Polynomial heritageof generalized spline
subdivision
- Doo-Sabin bi-2 B-spline
- Catmull-Clark bi-3 B-spline
- Midedge Zwart-Powell
C1 box-spline - Loop C2 box-spline
box-spline generalization of B-spline to
shift-invariant partitions book de Boor,
Hollig, Riemenschneider 94
5Polynomial heritageof generalized spline
subdivision
- Subdivision of the Zwart-Powell C1 quadratic
box-spline
basis function
Subdivision
a
Subdivision Rule
c
d
Subdivision
6Polynomial heritageof generalized spline
subdivision
Zwart-Powell subdivision 2 steps of Midedge
subdivision
Mid-edge Rule (simplest rule)
regular 4-valence, quadrilaterals
2 steps
4 steps
1
1
2
7Polynomial heritageof generalized spline
subdivision
- Increasing regions are regular (polynomial)
- Union of surface layers at an extra-ordinary point
8Polynomial heritageof generalized spline
subdivision
Representation as Bezier patches
Evaluation at non-binary points
Fast moment computation
9Generalized spline subdivision
Jorg Peters SurfLab (Purdue,UFL)
- Polynomial Heritage
- Computing Moments
- Shape and Eigenvalues
10Moments of objects enclosed by generalized
subdivision surfaces
Inertia Frame
- Challenge Exponential increase in the number of
facets!
Volume
11Moments of objects enclosed by generalized
subdivision surfaces
Theory Gauss Divergence Theorem
ò
Ñ
f
dV
The integral of the divergence over the volume
V
equals the integral of the normal component over
the surface S
ò
dS
n
n/
f
S
ò
ò
ò
Ñ
f
dU
n
f
dS
n
n/
f
dV
V
S
U
12Moments of objects enclosed by generalized
subdivision surfaces
Theory Change of variables
ò
dS
The area of the surface element S
S
equals the integral of the Jacobian n of the
surface parametrization (x,y,z) over the domain U
ò
dU
n
U
ò
ò
Ñ
f
dS
n
n/
f
dV
V
S
13Moments of objects enclosed by generalized
subdivision surfaces
For example, f0,0,z n f n
z is piecewise
polynomial
in regular regions
-
y
x
y
x
v
v
u
u
Volume
Ã¥
ò
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
u
v
v
u
p
patch
Up
14Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
u
v
v
u
Up
Schema for bi-3 Bezier patch
15Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
u
v
v
u
Up
16Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
u
v
v
u
Up
17Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
u
v
v
u
Up
18Moments of objects enclosed by generalized
subdivision surfaces
Work at each subdivision step linear for
each extraordinary point add volume
contribution of 3n patches
Doo-Sabin
19Moments of objects enclosed by generalized
subdivision surfaces
Ã¥
ò
-
p
p
p
p
p
dv
du
)
y
x
y
x
(
z
V
u
v
v
u
i
i
layer
in
p
Up
m
Ã¥
W
V
Volume
V
m
V
i
i1
W
i
0
i
m
20Moments of objects enclosed by generalized
subdivision surfaces
- Error estimation bounding boxes
21Moments of objects enclosed by generalized
subdivision surfaces
- Geometric decay of error volume
1, 1/8, 1/64, ...
22Moments of objects enclosed by generalized
subdivision surfaces
- Computing geometry given a fixed volume
Bisection
23Moments of objects enclosed by generalized
subdivision surfaces
- Higher moments and the inertia frame
center of mass
ò
ò
ò
dV
z
dV,
y
,
dV
x
V
V
V
ò
dV,...
xy
...,
inertia tensor
eigenvector frame
V
24Moments of objects enclosed by generalized
subdivision surfaces
- Higher moments and the inertia frame
center of mass
25Moments of objects enclosed by generalized
subdivision surfaces
Center of mass support
26Moments of objects enclosed by generalized
subdivision surfaces
- Simple registration, comparison
matching frames computing a 3x3 matrix Q
IP Q IS
27Moments of objects enclosed by generalized
subdivision surfaces
Inertia Frame
- Solution Moments efficiently and exactly
computed via Gauss theorem and polynomial
heritage
Volume
28(No Transcript)
29Shape and eigenvalues
- Union of surface layers at an extra-ordinary
point
- Control points transformed by the subdivision
matrix
30Shape and eigenvalues
31Shape and eigenvalues
l
- If all lt 1, then collapse
- If some gt 1, then unbounded growth
- Good sequence 1, , , where
lt 1 - Eigenvectors of determine the tangent plane
l
l
l
l
l
l
l
32Shape and eigenvalues
- Fast contraction of 3-sided facets
l
(1cos(2pi/ 3))/2 .25 - Slow contraction of large facets
l (1cos(2pi/16))/2 .962...
midedge subdivision
33Shape and eigenvalues
- adjust subdominant eigenvalues (modified
midedge subdivision) ltgt l . 5
34Shape and eigenvalues
35Generalized spline subdivisionSummary
- Polynomial Heritage regular regions
- Computing Moments Gauss theorem
- Shape and Eigenvalues subdominant values