Generalized spline subdivision - PowerPoint PPT Presentation

About This Presentation
Title:

Generalized spline subdivision

Description:

adjust subdominant eigenvalues (modified midedge subdivision) = l =. 5. Jorg ... Computing Moments Gauss' theorem. Shape and Eigenvalues subdominant values ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 36
Provided by: jorg82
Learn more at: https://www.cise.ufl.edu
Category:

less

Transcript and Presenter's Notes

Title: Generalized spline subdivision


1
Generalized spline subdivision
Jorg Peters SurfLab (Purdue,UFL)
  • Polynomial Heritage
  • Computing Moments
  • Shape and Eigenvalues

2
Polynomial heritageof generalized spline
subdivision
  • Doo-Sabin Catmull-Clark

3
Polynomial heritageof generalized spline
subdivision
  • Increasing regions are regular points and
    faces have standard valence

4
Polynomial heritageof generalized spline
subdivision
  • Doo-Sabin bi-2 B-spline
  • Catmull-Clark bi-3 B-spline
  • Midedge Zwart-Powell
    C1 box-spline
  • Loop C2 box-spline

box-spline generalization of B-spline to
shift-invariant partitions book de Boor,
Hollig, Riemenschneider 94
5
Polynomial heritageof generalized spline
subdivision
  • Subdivision of the Zwart-Powell C1 quadratic
    box-spline

basis function
Subdivision
a
Subdivision Rule
c
d
Subdivision
6
Polynomial heritageof generalized spline
subdivision
Zwart-Powell subdivision 2 steps of Midedge
subdivision
Mid-edge Rule (simplest rule)
regular 4-valence, quadrilaterals
2 steps
4 steps
1
1
2
7
Polynomial heritageof generalized spline
subdivision
  • Increasing regions are regular (polynomial)
  • Union of surface layers at an extra-ordinary point

8
Polynomial heritageof generalized spline
subdivision
  • Uses

Representation as Bezier patches
Evaluation at non-binary points
Fast moment computation
9
Generalized spline subdivision
Jorg Peters SurfLab (Purdue,UFL)
  • Polynomial Heritage
  • Computing Moments
  • Shape and Eigenvalues

10
Moments of objects enclosed by generalized
subdivision surfaces
Inertia Frame
  • Challenge Exponential increase in the number of
    facets!

Volume
11
Moments of objects enclosed by generalized
subdivision surfaces
Theory Gauss Divergence Theorem
ò

Ñ
f
dV
The integral of the divergence over the volume
V
equals the integral of the normal component over
the surface S
ò

dS
n
n/

f
S
ò
ò
ò





Ñ
f


dU
n
f

dS

n
n/

f

dV
V
S
U
12
Moments of objects enclosed by generalized
subdivision surfaces
Theory Change of variables
ò
dS
The area of the surface element S
S
equals the integral of the Jacobian n of the
surface parametrization (x,y,z) over the domain U
ò
dU
n

U
ò
ò




Ñ
f


dS

n
n/

f

dV
V
S
13
Moments of objects enclosed by generalized
subdivision surfaces
For example, f0,0,z n f n
z is piecewise
polynomial
in regular regions
-
y
x
y
x
v
v
u
u
Volume
Ã¥
ò
-

p
p
p
p
p
dv
du

)
y
x
y
x
(
z
u
v
v
u
p
patch
Up
14
Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du

)
y
x
y
x
(
z
u
v
v
u
Up

Schema for bi-3 Bezier patch
15
Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du

)
y
x
y
x
(
z
u
v
v
u
Up

16
Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du

)
y
x
y
x
(
z
u
v
v
u
Up

17
Moments of objects enclosed by generalized
subdivision surfaces
ò
Volume patch p
-
p
p
p
p
p
dv
du

)
y
x
y
x
(
z
u
v
v
u
Up

18
Moments of objects enclosed by generalized
subdivision surfaces
Work at each subdivision step linear for
each extraordinary point add volume
contribution of 3n patches
Doo-Sabin
19
Moments of objects enclosed by generalized
subdivision surfaces
Ã¥
ò
-
p
p
p
p
p

dv
du

)
y
x
y
x
(
z
V
u
v
v
u
i
i
layer
in

p
Up

m
Ã¥


W
V
Volume
V
m
V
i
i1
W

i
0
i
m
20
Moments of objects enclosed by generalized
subdivision surfaces
  • Error estimation bounding boxes

21
Moments of objects enclosed by generalized
subdivision surfaces
  • Geometric decay of error volume

1, 1/8, 1/64, ...
22
Moments of objects enclosed by generalized
subdivision surfaces
  • Computing geometry given a fixed volume

Bisection
23
Moments of objects enclosed by generalized
subdivision surfaces
  • Higher moments and the inertia frame

center of mass
ò
ò
ò
dV

z
dV,
y
,
dV
x
V
V
V
ò
dV,...
xy
...,
inertia tensor
eigenvector frame
V
24
Moments of objects enclosed by generalized
subdivision surfaces
  • Higher moments and the inertia frame

center of mass
25
Moments of objects enclosed by generalized
subdivision surfaces
  • Physics-based animation

Center of mass support
26
Moments of objects enclosed by generalized
subdivision surfaces
  • Simple registration, comparison

matching frames computing a 3x3 matrix Q
IP Q IS
27
Moments of objects enclosed by generalized
subdivision surfaces
Inertia Frame
  • Solution Moments efficiently and exactly
    computed via Gauss theorem and polynomial
    heritage

Volume
28
(No Transcript)
29
Shape and eigenvalues
  • Union of surface layers at an extra-ordinary
    point
  • Control points transformed by the subdivision
    matrix

30
Shape and eigenvalues
31
Shape and eigenvalues
l
  • If all lt 1, then collapse
  • If some gt 1, then unbounded growth
  • Good sequence 1, , , where
    lt 1
  • Eigenvectors of determine the tangent plane

l
l
l
l
l
l
l
32
Shape and eigenvalues
  • Fast contraction of 3-sided facets
    l
    (1cos(2pi/ 3))/2 .25
  • Slow contraction of large facets
    l (1cos(2pi/16))/2 .962...

midedge subdivision
33
Shape and eigenvalues
  • adjust subdominant eigenvalues (modified
    midedge subdivision) ltgt l . 5

34
Shape and eigenvalues
35
Generalized spline subdivisionSummary
  • Polynomial Heritage regular regions
  • Computing Moments Gauss theorem
  • Shape and Eigenvalues subdominant values
Write a Comment
User Comments (0)
About PowerShow.com