Anthony Illingworth, Robin Hogan , Ewan O - PowerPoint PPT Presentation

About This Presentation
Title:

Anthony Illingworth, Robin Hogan , Ewan O

Description:

Anthony Illingworth, Robin Hogan , Ewan O'Connor, U of Reading, UK ... Adrian Tomkins, ECMWF, Charles Wrench, RAL. Herman Russchenberg, Oleg Krasnov TUD, NL ... – PowerPoint PPT presentation

Number of Views:139
Avg rating:3.0/5.0
Slides: 16
Provided by: robin47
Learn more at: https://cloud-net.org
Category:

less

Transcript and Presenter's Notes

Title: Anthony Illingworth, Robin Hogan , Ewan O


1
CloudNET evaluating the clouds in seven
operational forecast models
  • Anthony Illingworth, Robin Hogan , Ewan OConnor,
    U of Reading, UK
  • Nicolas Gaussiat Damian Wilson, Malcolm Brooks
    Met Office, UK
  • Dominique Bouniol, Alain Protat Martial
    Haeffelin, CETP, France
  • David Donovan, Gerd-Jan Zadelhoff, Henk
    Klein-Baltink KNMI, NL
  • Adrian Tomkins, ECMWF, Charles Wrench, RAL
  • Herman Russchenberg, Oleg Krasnov TUD, NL
  • Jean-M Piriou Meteo France
  • Pekka Ravilla, Vaisala, Finland. et al.

2
The EU CloudNet project Since April
2001www.met.rdg.ac.uk/radar/cloudnet
www.cloud-net.org
  • Aim to retrieve continuously the crucial cloud
    parameters for climate and forecast models
  • Three sites Chilbolton (UK) Cabauw (NL) and
    Palaiseau (F)
  • recently Lindenberg (D) and ARM sites (USA
    Pacific)
  • To evaluate a number of operational models
  • Met Office (mesoscale and global versions)
  • ECMWF - Météo-France (Arpege)
  • KNMI (Racmo and Hirlam)
  • recently DWD Lokal Model and SMHI RCA model
  • Crucial aspects
  • Report retrieval errors and data quality flags
  • Use common formats based around NetCDF allow all
    algorithms to be applied at all sites and
    compared to all models
  • COULD USE THE APPROACH FOR CLOUDSAT/CALIPSO
    GLOBAL DATA

3
The three original CloudNET sites
Cabauw, The Netherlands 1.2-GHz wind profiler
RASS (KNMI) 3.3-GHz FM-CW radar TARA (TUD) 35-GHz
cloud radar (KNMI) 1064/532-nm lidar (RIVM) 905
nm lidar ceilometer (KNMI) 22-channel MICCY
radiometer (Bonn) IR radiometer (KNMI)
SIRTA, Palaiseau (Paris), France 5-GHz Doppler
Radar (Ronsard) 94-GHz Doppler Radar
(Rasta) 1064/532 nm polarimetric lidar 10.6 µm
Scanning Doppler Lidar 24/37-GHz radiometer
(DRAKKAR) 23.8/31.7-GHz radiometer (RESCOM)
Chilbolton, UK 3-GHz Doppler/polarisation radar
(CAMRa) 94-GHz Doppler cloud radar
(Galileo) 35-GHz Doppler cloud radar
(Copernicus) 905-nm lidar ceilometer 355-nm UV
lidar 22.2/28.8 GHz dual frequency radiometer
  • Core instrumentation at each site
  • Radar, lidar, microwave radiometers, raingauge

4
Cloud Parameterisation
  • Operational models currently in each grid box
  • typically two prognostic cloud variables
  • Prognostic liquid water/vapour content
  • Prognostic ice water content (IWC) OR diagnose
    from T
  • Prognostic cloud fraction OR diagnosed from
    total water PDF
  • Particle size is prescribed
  • Cloud droplets - different for marine/continental
  • Ice particles size decreases with temperature
  • Terminal velocity is a function of ice water
    content
  • Sub-grid scale effects
  • Overlap is assumed to be maximum-random
  • What about cloud inhomogeneity?
  • How can we evaluate hence improve model clouds?

5
Standard CloudNET observations (e.g. Chilbolton)
  • Radar Lidar, gauge, radiometers

But can the average user make sense of these
measurements?
6
Target categorization
  • Combining radar, lidar and model allows the type
    of cloud (or other target) to be identified
  • From this can calculate cloud fraction in each
    model gridbox

7
Cloud fraction
Observations OCTOBER 2003 Met Office Mesoscale
Model ECMWF Global Model Meteo-France ARPEGE Mo
del KNMI Regional Atmospheric Climate Model
8
What happened to the MeteoFrance Arpege model on
18 April 2003?
Modification of cloud scheme cloud fraction and
water content now diagnosed from total water
content.
9
Evaluation of Meteo-France Arpege total cloud
cover using conventional synoptic observations.
? More rms Error
  • Worse
  • Bias
  • ?

2000 2005 2000 2005
Changes to cloud scheme in 2003-2005 seem to have
made performance worse!
10
CloudNET monthly profiles of mean cloud
fraction and pdf of values of cloud fraction v
model Jan 2003 Jan 2005
Objective CloudNET analysis shows a remarkable
improvement in model clouds.
11
Equitable threat scores for cloud fraction
  • Scores for cloud fraction gt 0.05 over Cabauw for
    seven models together with persistence and
    climatology.

12
Skill versus forecast lead time
  • Met Office best over
  • Chilbolton
  • DWD best over Lindenberg.

13
ARM SITES NOW BEING PROCESSED VIA CLOUDNET
SYSTEMMANUS ARM SITE IN W PACIFIC. CLOUD
FRACTION
CEILOMETER ONLY HIGH CIRRUS IS OBSERVED BY MPL
LIDAR NOT YET CORRECT IN CLOUDNET
14
TROPICAL CONVECTION MANUS ARM SITE IN W PACIFIC.
CLOUD FRACTION
OBSERVED HIGH CIRRUS NOT YET CORRECT IN
CLOUDNET
ECMWF MODEL - MODEL CONVECTION SCHEME
CONTINUALLY TRIGGERING - GIVES V LOW CLOUD
FRACTION IN TOO MANY BOXES.
15
TODAYS TIMETABLE
  • CLOUD OBSERVING STATIONS.
  • RETRIEVAL ALGORITHMS
  • Lunch
  • COMPARISON WITH THE OPERATIONAL MODELS.
  • MODELLERS PERSPECTIVE AND GENERAL DISCUSSION.
  • SPECIFICATION FOR A CLOUD
  • OBSERVING STATION.
Write a Comment
User Comments (0)
About PowerShow.com