Title: Modeling Consumer Decision Making and Discrete Choice Behavior
1(No Transcript)
2Econometrics in Health Economics Discrete
Choice ModelingandFrontier Modeling and
Efficiency EstimationProfessor William
GreeneStern School of BusinessNew York
UniversitySeptember 2-4, 2007
3Application to Spanish Dairy Farms
N 247 farms, T 6 years (1993-1998)
4Using Farm Means of the Data
5 6(No Transcript)
7OLS vs. Frontier/MLE
8(No Transcript)
9JLMS Inefficiency Estimator
- FRONTIER LHS the variable
- RHS ONE, the
variables - EFF the new variable
- Creates a new variable in the data set.
- FRONTIER LHS YIT RHS X
- EFF U_i
10(No Transcript)
11(No Transcript)
12(No Transcript)
13Half Normal vs. Exponential
14 15Ranking Observations
- CREATE newname Rnk ( Variable )
- Creates the set of ranks. Use in any
subsequent analysis.
16(No Transcript)
17 Confidence Intervals for Technical
Inefficiency, u(i)
18 Confidence Intervals for Technical
Efficiency, Exp-u(i)
19(No Transcript)
20The Cost Frontier Model
21The Linear Homogeneity Restriction
22Translog vs. Cobb Douglas
23Cost Frontier Command
- FRONTIER COST
- LHS the variable
- RHS ONE, the
variables - EFF the new variable
- e(i) v(i) u(i) u(i) is still positive
24Estimated Cost Frontier
25 JLMS Inefficiency Estimator
- FRONTIER COST LHS the variable
- RHS ONE, the
variables - EFF the new variable
- Creates a new variable in the data set.
- FRONTIER COST
- LHS YIT RHS X
- EFF U_i
26 Cost Frontier Inefficiencies
27Normal-Truncated NormalFrontier Command
- FRONTIER COST
- LHS the variable
- RHS ONE, the
variables - Model Truncation
- EFF the new variable
- e(i) v(i) /- u(i)
- u(i) U(i), U(i) Nµ,?2
- The half normal model has µ 0.
28 Truncated Normal Model
29Half Normal
Truncated Normal
30 Multiple Output Cost Function
31Observations
- Truncation Model estimation is often unstable
- Often estimation is not possible
- When possible, estimates are often wild
- Estimates of u(i) are usually only moderately
affected - Estimates of u(i) are fairly stable across models
(exponential, truncation, etc.)
32Assignment
- Christensen/Greene Electricity Application
Production vs. Cost frontier - Airlines Data Frontier Model Building
- Banking Data Multiple Output Cost Function
33(No Transcript)
34WHO Data
35Heterogeneous Frontier Command
- FRONTIER COST
- LHS the variable
- RHS ONE, the
variables, - the additional
variables - EFF the new variable
- e(i) v(i) /- u(i)
36Heterogeneous Frontier Model
- FRONTIER LHS LDALE
- RHS ONE,LHEXP,LHEXP2,LEDUC,
- VOICE,GEFF,LPOPDEN,TROPICS
- EFF UI_WHO
37(No Transcript)
38Heteroscedasticity
39Model Command for Heteroscedasticity
40(No Transcript)
41(No Transcript)
42Heterogeneity in the Mean of u(i)
43(No Transcript)
44(No Transcript)
45Telling NLOGIT You are Fitting a Panel Data Model
- Balanced Panel
- Model PDS number of periods
- REGRESS Lhs Milk Rhs One,Labor Pds
6 Panel - (Note Panel is needed only for REGRESS)
- Unbalanced Panel
- Model PDS group size variable
- REGRESS Lhs Milk Rhs One,Labor
- Pds FarmPrds Panel
- FarmPrds gives the number of periods, in
every period.
46 Group Size Variables for Unbalanced Panels
47Creating a Group Size Variable
- Requires an ID variable (such as FARM)
- (1) Set the full sample exactly as desired
- (2) REGRESS LHSOne Rhs One Panel STR
ID - where ID is the identification variable,
e.g., STRFARM - This creates a new variable named _GROUPTI. Now
use - Pds _Groupti
48Application to Spanish Dairy Farms
N 247 farms, T 6 years (1993-1998)
49Exploring a Panel Data Set Dairy
REGRESS Lhs YIT RHS
COBBDGLS PANEL PDS 6
REGRESS Lhs YIT RHS
COBBDGLS PANEL PDS 6
Het Group
50Nonlinear Panel Data Models
MODEL NAME Lhs
RHS PDS the
specification any
other model parts ALL PANEL DATA MODEL
COMMANDS ARE THE SAME
51Panel Data Frontier Model Commands
- FRONTIER LHS COST
- RHS
- EFF
- PDS
- ... the rest of the model
- any other options
52Pitt and Lee Random Effects
- FRONTIER LHS COST
- RHS
- EFF
- PDS
- any other options
- This is the default panel model.
53Pitt and Lee Random Effectswith
Heteroscedasticity Time Invariant Inefficiency
- FRONTIER LHS COST
- RHS
- EFF
- PDS
- HET HFU
- HFV
54Pitt and Lee Random Effectswith
Heteroscedasticity and Truncation Time Invariant
Inefficiency
- FRONTIER LHS COST
- RHS
- EFF
- PDS
- HET HFU
- HFV
- MODEL T RH2 One,
55Pitt and Lee Random Effectswith
HeteroscedasticityTime Invariant Inefficiency
- FRONTIER LHS COST
- RHS
- EFF
- PDS
- HET HFU
- HFV
56Schmidt and Sickles Fixed Effects
- REGRESS LHS RHS
- PDS PANEL PAR FIXED
- CREATE AI ALPHAFE ( id )
- CALC MAXAI Max(AI)
- CREATE UI MAXAI AI
- (Use Minimum and AI - MINAI for cost.)
57True Random EffectsTime Varying Inefficiency
- FRONTIER LHS COST RHS
- FRONTIER LHS COST RHS
- PDS Halton (a good
idea) PTS number - RPM FCN ONE (n)
- EFF
- Note, first and second FRONTIER commands are
identical. This - sets up the starting values.
58True Fixed EffectsTime Varying Inefficiency
- FRONTIER LHS COST RHS
- FRONTIER LHS COST RHS
- PDS
- FEM
- EFF
- Note, first and second FRONTIER commands are
identical. This - sets up the starting values.
59Battese and CoelliTime Varying Inefficiency
- FRONTIER LHS COST RHS
- PDS
- MODEL BC
- EFF
- This is the default specification, u(i,t)
exph(t-T) U(i) - To use the extended specification,
u(i,t)expdz(i) U(i) - Het
- HFU variables
60Other Models
- There are many other panel models with time
varying and time invariant inefficiency,
heteroscedasticity, heterogeneity, etc. - Latent class,
- Random parameters
- Sample selection,
- And so on.