Modeling Consumer Decision Making and Discrete Choice Behavior - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

Modeling Consumer Decision Making and Discrete Choice Behavior

Description:

Christensen/Greene Electricity Application: Production vs. Cost frontier. Airlines Data: Frontier Model Building. Banking Data: Multiple Output Cost Function ... – PowerPoint PPT presentation

Number of Views:229
Avg rating:3.0/5.0
Slides: 61
Provided by: valued79
Category:

less

Transcript and Presenter's Notes

Title: Modeling Consumer Decision Making and Discrete Choice Behavior


1
(No Transcript)
2
Econometrics in Health Economics Discrete
Choice ModelingandFrontier Modeling and
Efficiency EstimationProfessor William
GreeneStern School of BusinessNew York
UniversitySeptember 2-4, 2007
3
Application to Spanish Dairy Farms
N 247 farms, T 6 years (1993-1998)
4
Using Farm Means of the Data
5

6
(No Transcript)
7
OLS vs. Frontier/MLE
8
(No Transcript)
9
JLMS Inefficiency Estimator
  • FRONTIER LHS the variable
  • RHS ONE, the
    variables
  • EFF the new variable
  • Creates a new variable in the data set.
  • FRONTIER LHS YIT RHS X
  • EFF U_i

10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Half Normal vs. Exponential
14

15
Ranking Observations
  • CREATE newname Rnk ( Variable )
  • Creates the set of ranks. Use in any
    subsequent analysis.

16
(No Transcript)
17
Confidence Intervals for Technical
Inefficiency, u(i)
18
Confidence Intervals for Technical
Efficiency, Exp-u(i)
19
(No Transcript)
20
The Cost Frontier Model
21
The Linear Homogeneity Restriction
22
Translog vs. Cobb Douglas
23
Cost Frontier Command
  • FRONTIER COST
  • LHS the variable
  • RHS ONE, the
    variables
  • EFF the new variable
  • e(i) v(i) u(i) u(i) is still positive

24
Estimated Cost Frontier
25
JLMS Inefficiency Estimator
  • FRONTIER COST LHS the variable
  • RHS ONE, the
    variables
  • EFF the new variable
  • Creates a new variable in the data set.
  • FRONTIER COST
  • LHS YIT RHS X
  • EFF U_i

26
Cost Frontier Inefficiencies
27
Normal-Truncated NormalFrontier Command
  • FRONTIER COST
  • LHS the variable
  • RHS ONE, the
    variables
  • Model Truncation
  • EFF the new variable
  • e(i) v(i) /- u(i)
  • u(i) U(i), U(i) Nµ,?2
  • The half normal model has µ 0.

28
Truncated Normal Model
29
Half Normal
Truncated Normal
30
Multiple Output Cost Function
31
Observations
  • Truncation Model estimation is often unstable
  • Often estimation is not possible
  • When possible, estimates are often wild
  • Estimates of u(i) are usually only moderately
    affected
  • Estimates of u(i) are fairly stable across models
    (exponential, truncation, etc.)

32
Assignment
  • Christensen/Greene Electricity Application
    Production vs. Cost frontier
  • Airlines Data Frontier Model Building
  • Banking Data Multiple Output Cost Function

33
(No Transcript)
34
WHO Data
35
Heterogeneous Frontier Command
  • FRONTIER COST
  • LHS the variable
  • RHS ONE, the
    variables,
  • the additional
    variables
  • EFF the new variable
  • e(i) v(i) /- u(i)

36
Heterogeneous Frontier Model
  • FRONTIER LHS LDALE
  • RHS ONE,LHEXP,LHEXP2,LEDUC,
  • VOICE,GEFF,LPOPDEN,TROPICS
  • EFF UI_WHO

37
(No Transcript)
38
Heteroscedasticity
39
Model Command for Heteroscedasticity
40
(No Transcript)
41
(No Transcript)
42
Heterogeneity in the Mean of u(i)
43
(No Transcript)
44
(No Transcript)
45
Telling NLOGIT You are Fitting a Panel Data Model
  • Balanced Panel
  • Model PDS number of periods
  • REGRESS Lhs Milk Rhs One,Labor Pds
    6 Panel
  • (Note Panel is needed only for REGRESS)
  • Unbalanced Panel
  • Model PDS group size variable
  • REGRESS Lhs Milk Rhs One,Labor
  • Pds FarmPrds Panel
  • FarmPrds gives the number of periods, in
    every period.

46
Group Size Variables for Unbalanced Panels
47
Creating a Group Size Variable
  • Requires an ID variable (such as FARM)
  • (1) Set the full sample exactly as desired
  • (2) REGRESS LHSOne Rhs One Panel STR
    ID
  • where ID is the identification variable,
    e.g., STRFARM
  • This creates a new variable named _GROUPTI. Now
    use
  • Pds _Groupti

48
Application to Spanish Dairy Farms
N 247 farms, T 6 years (1993-1998)
49
Exploring a Panel Data Set Dairy
REGRESS Lhs YIT RHS
COBBDGLS PANEL PDS 6
REGRESS Lhs YIT RHS
COBBDGLS PANEL PDS 6
Het Group
50
Nonlinear Panel Data Models
MODEL NAME Lhs
RHS PDS the
specification any
other model parts ALL PANEL DATA MODEL
COMMANDS ARE THE SAME
51
Panel Data Frontier Model Commands
  • FRONTIER LHS COST
  • RHS
  • EFF
  • PDS
  • ... the rest of the model
  • any other options

52
Pitt and Lee Random Effects
  • FRONTIER LHS COST
  • RHS
  • EFF
  • PDS
  • any other options
  • This is the default panel model.

53
Pitt and Lee Random Effectswith
Heteroscedasticity Time Invariant Inefficiency
  • FRONTIER LHS COST
  • RHS
  • EFF
  • PDS
  • HET HFU
  • HFV

54
Pitt and Lee Random Effectswith
Heteroscedasticity and Truncation Time Invariant
Inefficiency
  • FRONTIER LHS COST
  • RHS
  • EFF
  • PDS
  • HET HFU
  • HFV
  • MODEL T RH2 One,

55
Pitt and Lee Random Effectswith
HeteroscedasticityTime Invariant Inefficiency
  • FRONTIER LHS COST
  • RHS
  • EFF
  • PDS
  • HET HFU
  • HFV

56
Schmidt and Sickles Fixed Effects
  • REGRESS LHS RHS
  • PDS PANEL PAR FIXED
  • CREATE AI ALPHAFE ( id )
  • CALC MAXAI Max(AI)
  • CREATE UI MAXAI AI
  • (Use Minimum and AI - MINAI for cost.)

57
True Random EffectsTime Varying Inefficiency
  • FRONTIER LHS COST RHS
  • FRONTIER LHS COST RHS
  • PDS Halton (a good
    idea) PTS number
  • RPM FCN ONE (n)
  • EFF
  • Note, first and second FRONTIER commands are
    identical. This
  • sets up the starting values.

58
True Fixed EffectsTime Varying Inefficiency
  • FRONTIER LHS COST RHS
  • FRONTIER LHS COST RHS
  • PDS
  • FEM
  • EFF
  • Note, first and second FRONTIER commands are
    identical. This
  • sets up the starting values.

59
Battese and CoelliTime Varying Inefficiency
  • FRONTIER LHS COST RHS
  • PDS
  • MODEL BC
  • EFF
  • This is the default specification, u(i,t)
    exph(t-T) U(i)
  • To use the extended specification,
    u(i,t)expdz(i) U(i)
  • Het
  • HFU variables

60
Other Models
  • There are many other panel models with time
    varying and time invariant inefficiency,
    heteroscedasticity, heterogeneity, etc.
  • Latent class,
  • Random parameters
  • Sample selection,
  • And so on.
Write a Comment
User Comments (0)
About PowerShow.com