Title: Time Series Analysis of Particles and Fields data
1Time Series Analysis of Particles and Fields data
- Potential subtraction
- Density computation from three sources (Ne, Ni,
scpot) - Cold plasma detection
- Next opportunity
- Velocity, pressure corrections from SST
- Waves analysis
- Suggested reading
- McFadden et al, THEMIS ESA instrument and
calibration (Space Sci. Reviews) - McFadden et al, ESA first results (Space Sci.
Reviews) - McFadden et al, Structure of plasmaspheric plumes
(GRL) - Materials in
- http//www.igpp.ucla.edu/public/vassilis/ESS265/20
080519 - class_notes_time_series_analysis_B.ppt
- thm_code/thm_pot2dens.pro, thm_part_dist.pro,
thm_part_moments.pro (for cleanup) - esa_particles/get_th?_pe?r.pro
- potential_correction.pro density_all.pro
cold_ions.pro
2Potential Subtraction
- Automatic subtraction
- Read spacecraft potential (Vsc)
- From spheres Vsc-(V3V4)/2.
- Add 1V offset
- Accounts for spheres drivenabove plasma
potential - Correct to infinity ( x 1.15 )
- Sensor voltage is not exactly atzerooffset
because Debye lengthis very large. A 15
correctionto account for plasma potentialat
infinite sphere distance. - Reduce electron energies
- E'elec Eelec Vsccorrected
- Increase ion energies
- E'ion Eion Vsccorrected
- Cannot do if EFI is not deployed
- Right hand side is an example
- Must do manually
- Determine Vsc from spectrum
- Manually correct potential
Ni
Ne
3Potential Subtraction
- Manual scpot subtraction
- When EFI not deployed
- Read scpot value (0)
- Correct based on spectra
- Recompute moments
- Use full or reduced distributions
- From peef get N,V,T
- From peer (6 angles) N,T
Ne Ni
gtgtgtgtgtgtpotential_correction.proltltltltltltltltltltltltltltltltltltlt
ltltltltltltltltlt timespan,'7 11 07/10',2,/hours sc'a th
m_load_state,probesc,/get_support thm_load_fit,pr
obesc,data'fgs',coord'gsm',suff'_gsm' thm_load
_fit,probesc,data'fgs',coord'dsl',suff'_dsl' t
hm_load_mom,probesc L2 onboard processed
moms thm_load_esa,probesc L2 ground processed
gmoms, omni spec Modify sc potential thm_load_
esa_pkt,probesc get_data,'tha_pxxm_pot',datatha_
pxxm_pot,dlimdlim tha_pxxm_pot.y()10.
eV store_data,'tha_pxxm_pot_corr',
dataxtha_pxxm_pot.x,ytha_pxxm_pot.y,
dlimdlim Recompute moments thm_part_moments,
probe sc, instrum 'peer', scpot_suffix
'_pxxm_pot_corr', mag_suffix '_fgs_dsl',
tplotnames tn options,'tha_peer_density','colors
','b' options,'tha_peim_density','colors','r'
store_data,'tha_pexm_density',
data'tha_peer_density tha_peim_density' options,'
tha_pexm_density','colors','b','r' options,'tha_
pe?m_density',yrange0,2 options,'tha_pexm_densi
ty',ylog0 tplot,'tha_fgs_gsm tha_pexm_density
tha_pe?r_en_eflux'
4Density from S/C Potential, Other
gtgtgtgtgtgtdensity_all.proltltltltltltltltltltltltltltltltltltltltltltltltltltltlt
timespan,'8 1 16/1400',6,/hours sc'd' thm_load_
state,probesc,/get_supp thm_load_fit,probesc,dat
a'fgs',coord'gsm',suff'_gsm' thm_load_fit,probe
sc,data'fgs',coord'dsl',suff'_dsl' thm_load_mo
m,probesc L2 onboard processed
moms thm_load_esa,probesc L2 ground processed
gmoms, omni spectra thm_load_sst,level2,probesc
NOW CONSTRUCT DENSITY FROM SCPOT tinterpol_mxn,'
thd_peer_t3','thd_pxxm_pot',newname'thd_peer_t3_i
nt' get_data,'thd_pxxm_pot',datathd_pxxm_pot,dld
l get_data,'thd_peer_t3_int',datathd_peer_t3_int
thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens,
Tetotal(thd_peer_t3_int.y,2)/3. ?New code, in
class materials store_data,'thd_pxxm_potdens',
dataxthd_pxxm_pot.x,ythd_pxxm_potdens,dldl
NOW PLOT UNCORRECTED DENSITIES store_data,'thd_p
eer_en_eflux_pot',data'thd_peer_en_eflux
thd_esa_pot' options,'thd_fgs_gsm',yrange-150,15
0 options,'thd_peer_density',colors'r' options
,'thd_peir_density',colors'b' options,'thd_pxxm
_potdens',colors'g' options,'thd_pxxm_potdens',
ylog1 options,'thd_peer_t3',ylog0 options,'thd_p
xxm_pot',ylog0 options,'thd_pe?r_en_eflux',yrang
e7.,25000. store_data,'thd_densities',
data'thd_peir_density thd_peer_density
thd_pxxm_potdens' tplot,'thd_fgs_gsm thd_peer_t3
thd_pxxm_pot thd_densities '
'thd_psef_en_eflux thd_peer_en_eflux_pot
thd_peir_en_eflux'
Ne Ni
Nscpot
5Correct Densities Issues
- Photoelectrons on Ne
- Have been corrected already, as EFI operating
- Both on board and through ground processing
- Primary and secondary electrons from gt10keV
electrons entering i/e aperture - Electron ESA, primaries and secondaries (below
about 40eV) NegtNi - Primaries, grazing incidence, degraded energy
- Secondaries from electron collisions with walls
- Secondary electrons in ion ESA (below about
500eV) Ni gt Ne - Must be gt2keV to overcome post-acceleration in
front of McP - When significant flux of energetic electrons is
present - See 1600 and 1630 UT injections on THD,
2008-01-16 - Can result in either NegtNi or NigtNe depending on
- Scattered flux relative to electron/ion fluxes
- Correct by integrating density above secondaries
- gt 40eV for electrons
- gt 100eV for ions
- Background radiation near radiation belts
- Penetrates ESA walls
- Produces constant background eflux as function of
energy
6Correct Densities Solution
gtgtgtgtgtgtdensity_all.pro(continued)ltltltltltltltltltltltltltltltltlt
ltltlt CORRECT DENSITIES load L0 omni spectra,
all ESA data in memory thm_load_esa_pkt,probesc
PEIR MOMS/SPECTRA Remove radiation and
integrate above 40eV to remove scattered
electrons thm_part_moments, probe sc, instrum
'peir', scpot_suffix '_pxxm_pot',
trange'8 1 16/1400','8 1 16/2000',
erange0,31, mag_suffix '_fgs_dsl',
tplotnames tn, verbose 2, /bgnd_remove
names are output into tn ?New code, in class
materials PEER MOMS/SPECTRA Remove
radiation and integrate above 40eV to remove
scattered electrons thm_part_moments, probe sc,
instrum 'peer', scpot_suffix '_esa_pot',
trange'8 1 16/1400','8 1 16/2000',
erange0,24, mag_suffix '_fgs_dsl',
tplotnames tn, verbose 2, /bgnd_remove
names are output into tn ?New code, in class
materials scpot determination of density,
with (now/see above) better temperature tinterpo
l_mxn,'thd_peer_t3','thd_pxxm_pot',newname'thd_pe
er_t3_int' get_data,'thd_pxxm_pot',datathd_pxxm_p
ot,dldl get_data,'thd_peer_t3_int',datathd_peer_
t3_int thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potden
s, Tetotal(thd_peer_t3_int.y,2)/3. store_data
,'thd_pxxm_potdens', dataxthd_pxxm_pot.x,y
thd_pxxm_potdens,dldl tplot,'thd_fgs_gsm
thd_peer_t3 thd_pxxm_pot thd_densities '
'thd_psef_en_eflux thd_peer_en_eflux_pot
thd_peir_en_eflux'
Ni requires better background removal (in
progress)
7Cold Ion Detection, Using Nscpot
gtgtgtgtgtgtcold_ions.proltltltltltltltltltltltltltltltltltltltlt timespan,
'7 6 8/2100',3,/hours sc'c' thm_load_state,pro
besc,/get_supp thm_load_fit,probesc,data'fgs',c
oord'gsm',suff'_gsm' thm_load_fit,probesc,data
'fgs',coord'dsl',suff'_dsl' thm_load_mom,probes
c thm_load_esa,probesc NOW CONSTRUCT DENSITY
FROM SCPOT tinterpol_mxn,'thc_peer_t3','thc_pxxm_p
ot', newname'thc_peer_t3_int' get_data,'thc_p
xxm_pot',datathc_pxxm_pot,dldl get_data,'thc_pee
r_t3_int',datathc_peer_t3_int thm_pot2dens,thc_px
xm_pot.y,thc_pxxm_potdens,
Tetotal(thc_peer_t3_int.y,2)/3. store_data,'thc_p
xxm_potdens', dataxthc_pxxm_pot.x,ythc_pxx
m_potdens,dldl NOW PLOT DENSITIES (NO
SCATTER/NO RADIATION) store_data,'thc_peer_en_eflu
x_pot', data'thc_peer_en_eflux
thc_pxxm_pot' options,'thc_fgs_gsm',yrange-70,10
0 options,'thc_peer_density',colors'r' options
,'thc_peir_density',colors'b' options,'thc_pxxm
_potdens',colors'g' options,'thc_pxxm_potdens',
ylog1 options,'thc_peer_t3',ylog0 options,'thc_p
xxm_pot',ylog0 options,'thc_pe?r_en_eflux',yrang
e7.,25000. store_data,'thc_densities',data'thc
_peir_density ' thc_peer_density
thc_pxxm_potdens' tplot,'thc_fgs_gsm
thc_peir_velocity_gsm thc_densities
thc_psef_en_eflux thc_peer_en_eflux_pot
thc_peir_en_eflux'
Nscpot gt NeNi Plasmasphere !
8Cold Ion Detection, Issues
- When Vscpot gt Vthion then
- Cold ions cannot overcome barrier
- Ni lt Vscpot
- When Vscpot lt EESAmin then
- Electrons are missed
- Cold electrons missed Ne lt Ni
- Situation is improved when Vi large
- Cold ions can be detected
- Ni agrees with Nscpot
- When Ekinetic - eVsc gt EESAmin
Hot plasma (NeNiNscpot)
9Cold Ion Detection, When Vi large
- Situation is improved when Vi large
- Cold ions can be detected
- Ni agrees with Nscpot
- When Ekinetic - eVsc gt EESAmin
gtgtgtgtgtgtcold_ions.pro (continued)ltltltltltltltltltltltltltltltltltlt
ltlt tvectot,'thc_peir_velocity_gsm',
newname'thc_peir_velocity_gsmt' tvectot,'thc_peir
_velocity_gsm',tot'thc_peir_velocity_t tinterp
ol_mxn,'thc_peir_velocity_t',
'thc_pxxm_pot',newname'thc_peir_velocity_tint' ge
t_data,'thc_peir_velocity_tint',datathc_peir_velo
city_tint get_data,'thc_pxxm_pot',datathc_pxxm_po
t eflow1000.(thc_peir_velocity_tint.y/310.)2
- thc_pxxm_pot.y in eV store_data,'thc_efl
ow',dataxthc_peir_velocity_tint.x,yeflow stor
e_data,'thc_peir_en_eflux-n-flow',
data'thc_peir_en_eflux thc_eflow' options,'thc_pe
ir_en_eflux',yrange7.,25000. tplot,'thc_fgs_
gsm thc_peir_velocity_gsmt thc_densities ',
thc_psef_en_eflux thc_peer_en_eflux_pot
thc_peir_en_eflux-n-flow' tlimit,'7 6
8/2200','7 6 8/2230'
10Multi-spacecraft Analysis Calibration
- ESA instruments received first an absolute
calibration - In the sheath, avoid unmeasured plasmaspheric
cold ions, electrons, or solar wind beam - Correct for energy dependent efficiencies
- Detector anode relative efficiencies (north/south
asymmetry) - Electron-ion relative efficiencies (based on
density, account for solar wind composition) - FGM calibration was done independently for each
spacecraft - Spin plane offsets determined routinely
- In the solar wind determine spin axis offsets
- Spin axis offset variation 0.2nT over the mission
11Multi-spacecraft Analysis ESA Inter-Calibration
- On all spacecraft, ions and electrons
- Detector anode relative efficiencies (north/south
asymmetry) - Sort ions and electrons separately in pitch-angle
- Apply low-order polynomial fit to pitch angle
- Determine anode efficiency that minimizes
variance (a 1-2 effect) - Large angle variance (systematic asymmetry)
checked further - Look at systematic flows during times expected to
have zero - Found none for ions in the magnetosphere
- Adjusted electron asymmetry (1-3) in the sheath
such that Vi Ve
12Multi-spacecraft Analysis ESA Inter-Calibration
- Detector energy relative efficiency
- Based on published data, private communications
and simulations - Main effect on ions is increase in g-factor due
to fringe fields at grid - Field from 2keV McP pre-acceleration potential
leaks through zero volt grid into detector - Collects scattered electrons, increases
sensitivity of detector at low (lt2keV) energies
Themis, ions simulated
Electrons
Ions
13Multi-spacecraft Analysis ESA Cross-Calibration
- THC was the trailblazer (EFI out) used as
reference - THC Electron sensor selected as reference
- THC Ion sensor caled for energy, anode
efficiency - THC Ion sensor g-factor adjusted to match
electron - All other spacecraft also internally calibrated
- Cross-calibration as follows
- Use early string of pearls configuration
- Adjust Ni/Ne (0.99) based on WIND/SWE 4 alphas
- Adjust THD/THC electron densities to match
- Adjust THE/THC etc.
- For THA
- Time varying calibration
- ESA McP scrubbing
- Efficiency decreases due to water molecules
venting - Stabilizes after few months of operations
Ignore
14Multi-spacecraft Analysis ESA Absolute
Calibration
THC electrons
- THC and THD electrons versus WIND-SWE
- Time-shift WIND data
- WIND has plasma waves
- WIND density calibrated from plasma frequency
- Five intervals found in summer of 07
- Correct deficiency due to scpot below Emin
- Extend Maxwellian spectra to low energies
- Themis g-factors scaled to 70 in Fall07
- In retrospect, were due to overestimate ofenergy
efficiency at low energies
THD electrons
Wind, B
THC, THD, B
THC, THD, Ne
Wind, B
15Multi-spacecraft Analysis Calibration
verification
- Find magnetopause crossings and sheath waves
- Expect quasi-static pressure balance
- Determine total pressure
- Ptotal Pion Pelectron PB
- Show total pressure is constant across
- Method shows that pressure balance is observed
- Calibration is working, at least at low energies
- Higher energy component has been less tested
PTot
PB
Pi
Pe
16Multi-spacecraft Analysis At the magnetopause
17Homework
- Find a THEMIS 2-4 hour interval of your interest
- Use at least two satellites
- Plot ion and electron density
- Plot density derived from spacecraft potential
- Explain the differences