Time Series Analysis of Particles and Fields data - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Time Series Analysis of Particles and Fields data

Description:

ESS 265. Time Series Analysis of Particles and Fields data ... Adjust Ni/Ne (0.99) based on WIND/SWE ~4% alphas. Adjust THD/THC electron densities to match ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 18
Provided by: VassilisAn9
Category:

less

Transcript and Presenter's Notes

Title: Time Series Analysis of Particles and Fields data


1
Time Series Analysis of Particles and Fields data
  • Potential subtraction
  • Density computation from three sources (Ne, Ni,
    scpot)
  • Cold plasma detection
  • Next opportunity
  • Velocity, pressure corrections from SST
  • Waves analysis
  • Suggested reading
  • McFadden et al, THEMIS ESA instrument and
    calibration (Space Sci. Reviews)
  • McFadden et al, ESA first results (Space Sci.
    Reviews)
  • McFadden et al, Structure of plasmaspheric plumes
    (GRL)
  • Materials in
  • http//www.igpp.ucla.edu/public/vassilis/ESS265/20
    080519
  • class_notes_time_series_analysis_B.ppt
  • thm_code/thm_pot2dens.pro, thm_part_dist.pro,
    thm_part_moments.pro (for cleanup)
  • esa_particles/get_th?_pe?r.pro
  • potential_correction.pro density_all.pro
    cold_ions.pro

2
Potential Subtraction
  • Automatic subtraction
  • Read spacecraft potential (Vsc)
  • From spheres Vsc-(V3V4)/2.
  • Add 1V offset
  • Accounts for spheres drivenabove plasma
    potential
  • Correct to infinity ( x 1.15 )
  • Sensor voltage is not exactly atzerooffset
    because Debye lengthis very large. A 15
    correctionto account for plasma potentialat
    infinite sphere distance.
  • Reduce electron energies
  • E'elec Eelec Vsccorrected
  • Increase ion energies
  • E'ion Eion Vsccorrected
  • Cannot do if EFI is not deployed
  • Right hand side is an example
  • Must do manually
  • Determine Vsc from spectrum
  • Manually correct potential

Ni
Ne
3
Potential Subtraction
  • Manual scpot subtraction
  • When EFI not deployed
  • Read scpot value (0)
  • Correct based on spectra
  • Recompute moments
  • Use full or reduced distributions
  • From peef get N,V,T
  • From peer (6 angles) N,T

Ne Ni
gtgtgtgtgtgtpotential_correction.proltltltltltltltltltltltltltltltltltltlt
ltltltltltltltltlt timespan,'7 11 07/10',2,/hours sc'a th
m_load_state,probesc,/get_support thm_load_fit,pr
obesc,data'fgs',coord'gsm',suff'_gsm' thm_load
_fit,probesc,data'fgs',coord'dsl',suff'_dsl' t
hm_load_mom,probesc L2 onboard processed
moms thm_load_esa,probesc L2 ground processed
gmoms, omni spec Modify sc potential thm_load_
esa_pkt,probesc get_data,'tha_pxxm_pot',datatha_
pxxm_pot,dlimdlim tha_pxxm_pot.y()10.
eV store_data,'tha_pxxm_pot_corr',
dataxtha_pxxm_pot.x,ytha_pxxm_pot.y,
dlimdlim Recompute moments thm_part_moments,
probe sc, instrum 'peer', scpot_suffix
'_pxxm_pot_corr', mag_suffix '_fgs_dsl',
tplotnames tn options,'tha_peer_density','colors
','b' options,'tha_peim_density','colors','r'
store_data,'tha_pexm_density',
data'tha_peer_density tha_peim_density' options,'
tha_pexm_density','colors','b','r' options,'tha_
pe?m_density',yrange0,2 options,'tha_pexm_densi
ty',ylog0 tplot,'tha_fgs_gsm tha_pexm_density
tha_pe?r_en_eflux'
4
Density from S/C Potential, Other
gtgtgtgtgtgtdensity_all.proltltltltltltltltltltltltltltltltltltltltltltltltltltltlt
timespan,'8 1 16/1400',6,/hours sc'd' thm_load_
state,probesc,/get_supp thm_load_fit,probesc,dat
a'fgs',coord'gsm',suff'_gsm' thm_load_fit,probe
sc,data'fgs',coord'dsl',suff'_dsl' thm_load_mo
m,probesc L2 onboard processed
moms thm_load_esa,probesc L2 ground processed
gmoms, omni spectra thm_load_sst,level2,probesc
NOW CONSTRUCT DENSITY FROM SCPOT tinterpol_mxn,'
thd_peer_t3','thd_pxxm_pot',newname'thd_peer_t3_i
nt' get_data,'thd_pxxm_pot',datathd_pxxm_pot,dld
l get_data,'thd_peer_t3_int',datathd_peer_t3_int
thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens,
Tetotal(thd_peer_t3_int.y,2)/3. ?New code, in
class materials store_data,'thd_pxxm_potdens',
dataxthd_pxxm_pot.x,ythd_pxxm_potdens,dldl
NOW PLOT UNCORRECTED DENSITIES store_data,'thd_p
eer_en_eflux_pot',data'thd_peer_en_eflux
thd_esa_pot' options,'thd_fgs_gsm',yrange-150,15
0 options,'thd_peer_density',colors'r' options
,'thd_peir_density',colors'b' options,'thd_pxxm
_potdens',colors'g' options,'thd_pxxm_potdens',
ylog1 options,'thd_peer_t3',ylog0 options,'thd_p
xxm_pot',ylog0 options,'thd_pe?r_en_eflux',yrang
e7.,25000. store_data,'thd_densities',
data'thd_peir_density thd_peer_density
thd_pxxm_potdens' tplot,'thd_fgs_gsm thd_peer_t3
thd_pxxm_pot thd_densities '
'thd_psef_en_eflux thd_peer_en_eflux_pot
thd_peir_en_eflux'
Ne Ni
Nscpot
5
Correct Densities Issues
  • Photoelectrons on Ne
  • Have been corrected already, as EFI operating
  • Both on board and through ground processing
  • Primary and secondary electrons from gt10keV
    electrons entering i/e aperture
  • Electron ESA, primaries and secondaries (below
    about 40eV) NegtNi
  • Primaries, grazing incidence, degraded energy
  • Secondaries from electron collisions with walls
  • Secondary electrons in ion ESA (below about
    500eV) Ni gt Ne
  • Must be gt2keV to overcome post-acceleration in
    front of McP
  • When significant flux of energetic electrons is
    present
  • See 1600 and 1630 UT injections on THD,
    2008-01-16
  • Can result in either NegtNi or NigtNe depending on
  • Scattered flux relative to electron/ion fluxes
  • Correct by integrating density above secondaries
  • gt 40eV for electrons
  • gt 100eV for ions
  • Background radiation near radiation belts
  • Penetrates ESA walls
  • Produces constant background eflux as function of
    energy

6
Correct Densities Solution
gtgtgtgtgtgtdensity_all.pro(continued)ltltltltltltltltltltltltltltltltlt
ltltlt CORRECT DENSITIES load L0 omni spectra,
all ESA data in memory thm_load_esa_pkt,probesc
PEIR MOMS/SPECTRA Remove radiation and
integrate above 40eV to remove scattered
electrons thm_part_moments, probe sc, instrum
'peir', scpot_suffix '_pxxm_pot',
trange'8 1 16/1400','8 1 16/2000',
erange0,31, mag_suffix '_fgs_dsl',
tplotnames tn, verbose 2, /bgnd_remove
names are output into tn ?New code, in class
materials PEER MOMS/SPECTRA Remove
radiation and integrate above 40eV to remove
scattered electrons thm_part_moments, probe sc,
instrum 'peer', scpot_suffix '_esa_pot',
trange'8 1 16/1400','8 1 16/2000',
erange0,24, mag_suffix '_fgs_dsl',
tplotnames tn, verbose 2, /bgnd_remove
names are output into tn ?New code, in class
materials scpot determination of density,
with (now/see above) better temperature tinterpo
l_mxn,'thd_peer_t3','thd_pxxm_pot',newname'thd_pe
er_t3_int' get_data,'thd_pxxm_pot',datathd_pxxm_p
ot,dldl get_data,'thd_peer_t3_int',datathd_peer_
t3_int thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potden
s, Tetotal(thd_peer_t3_int.y,2)/3. store_data
,'thd_pxxm_potdens', dataxthd_pxxm_pot.x,y
thd_pxxm_potdens,dldl tplot,'thd_fgs_gsm
thd_peer_t3 thd_pxxm_pot thd_densities '
'thd_psef_en_eflux thd_peer_en_eflux_pot
thd_peir_en_eflux'
Ni requires better background removal (in
progress)
7
Cold Ion Detection, Using Nscpot
gtgtgtgtgtgtcold_ions.proltltltltltltltltltltltltltltltltltltltlt timespan,
'7 6 8/2100',3,/hours sc'c' thm_load_state,pro
besc,/get_supp thm_load_fit,probesc,data'fgs',c
oord'gsm',suff'_gsm' thm_load_fit,probesc,data
'fgs',coord'dsl',suff'_dsl' thm_load_mom,probes
c thm_load_esa,probesc NOW CONSTRUCT DENSITY
FROM SCPOT tinterpol_mxn,'thc_peer_t3','thc_pxxm_p
ot', newname'thc_peer_t3_int' get_data,'thc_p
xxm_pot',datathc_pxxm_pot,dldl get_data,'thc_pee
r_t3_int',datathc_peer_t3_int thm_pot2dens,thc_px
xm_pot.y,thc_pxxm_potdens,
Tetotal(thc_peer_t3_int.y,2)/3. store_data,'thc_p
xxm_potdens', dataxthc_pxxm_pot.x,ythc_pxx
m_potdens,dldl NOW PLOT DENSITIES (NO
SCATTER/NO RADIATION) store_data,'thc_peer_en_eflu
x_pot', data'thc_peer_en_eflux
thc_pxxm_pot' options,'thc_fgs_gsm',yrange-70,10
0 options,'thc_peer_density',colors'r' options
,'thc_peir_density',colors'b' options,'thc_pxxm
_potdens',colors'g' options,'thc_pxxm_potdens',
ylog1 options,'thc_peer_t3',ylog0 options,'thc_p
xxm_pot',ylog0 options,'thc_pe?r_en_eflux',yrang
e7.,25000. store_data,'thc_densities',data'thc
_peir_density ' thc_peer_density
thc_pxxm_potdens' tplot,'thc_fgs_gsm
thc_peir_velocity_gsm thc_densities
thc_psef_en_eflux thc_peer_en_eflux_pot
thc_peir_en_eflux'
Nscpot gt NeNi Plasmasphere !
8
Cold Ion Detection, Issues
  • When Vscpot gt Vthion then
  • Cold ions cannot overcome barrier
  • Ni lt Vscpot
  • When Vscpot lt EESAmin then
  • Electrons are missed
  • Cold electrons missed Ne lt Ni
  • Situation is improved when Vi large
  • Cold ions can be detected
  • Ni agrees with Nscpot
  • When Ekinetic - eVsc gt EESAmin

Hot plasma (NeNiNscpot)
9
Cold Ion Detection, When Vi large
  • Situation is improved when Vi large
  • Cold ions can be detected
  • Ni agrees with Nscpot
  • When Ekinetic - eVsc gt EESAmin

gtgtgtgtgtgtcold_ions.pro (continued)ltltltltltltltltltltltltltltltltltlt
ltlt tvectot,'thc_peir_velocity_gsm',
newname'thc_peir_velocity_gsmt' tvectot,'thc_peir
_velocity_gsm',tot'thc_peir_velocity_t tinterp
ol_mxn,'thc_peir_velocity_t',
'thc_pxxm_pot',newname'thc_peir_velocity_tint' ge
t_data,'thc_peir_velocity_tint',datathc_peir_velo
city_tint get_data,'thc_pxxm_pot',datathc_pxxm_po
t eflow1000.(thc_peir_velocity_tint.y/310.)2
- thc_pxxm_pot.y in eV store_data,'thc_efl
ow',dataxthc_peir_velocity_tint.x,yeflow stor
e_data,'thc_peir_en_eflux-n-flow',
data'thc_peir_en_eflux thc_eflow' options,'thc_pe
ir_en_eflux',yrange7.,25000. tplot,'thc_fgs_
gsm thc_peir_velocity_gsmt thc_densities ',
thc_psef_en_eflux thc_peer_en_eflux_pot
thc_peir_en_eflux-n-flow' tlimit,'7 6
8/2200','7 6 8/2230'
10
Multi-spacecraft Analysis Calibration
  • ESA instruments received first an absolute
    calibration
  • In the sheath, avoid unmeasured plasmaspheric
    cold ions, electrons, or solar wind beam
  • Correct for energy dependent efficiencies
  • Detector anode relative efficiencies (north/south
    asymmetry)
  • Electron-ion relative efficiencies (based on
    density, account for solar wind composition)
  • FGM calibration was done independently for each
    spacecraft
  • Spin plane offsets determined routinely
  • In the solar wind determine spin axis offsets
  • Spin axis offset variation 0.2nT over the mission

11
Multi-spacecraft Analysis ESA Inter-Calibration
  • On all spacecraft, ions and electrons
  • Detector anode relative efficiencies (north/south
    asymmetry)
  • Sort ions and electrons separately in pitch-angle
  • Apply low-order polynomial fit to pitch angle
  • Determine anode efficiency that minimizes
    variance (a 1-2 effect)
  • Large angle variance (systematic asymmetry)
    checked further
  • Look at systematic flows during times expected to
    have zero
  • Found none for ions in the magnetosphere
  • Adjusted electron asymmetry (1-3) in the sheath
    such that Vi Ve

12
Multi-spacecraft Analysis ESA Inter-Calibration
  • Detector energy relative efficiency
  • Based on published data, private communications
    and simulations
  • Main effect on ions is increase in g-factor due
    to fringe fields at grid
  • Field from 2keV McP pre-acceleration potential
    leaks through zero volt grid into detector
  • Collects scattered electrons, increases
    sensitivity of detector at low (lt2keV) energies

Themis, ions simulated
Electrons
Ions
13
Multi-spacecraft Analysis ESA Cross-Calibration
  • THC was the trailblazer (EFI out) used as
    reference
  • THC Electron sensor selected as reference
  • THC Ion sensor caled for energy, anode
    efficiency
  • THC Ion sensor g-factor adjusted to match
    electron
  • All other spacecraft also internally calibrated
  • Cross-calibration as follows
  • Use early string of pearls configuration
  • Adjust Ni/Ne (0.99) based on WIND/SWE 4 alphas
  • Adjust THD/THC electron densities to match
  • Adjust THE/THC etc.
  • For THA
  • Time varying calibration
  • ESA McP scrubbing
  • Efficiency decreases due to water molecules
    venting
  • Stabilizes after few months of operations

Ignore
14
Multi-spacecraft Analysis ESA Absolute
Calibration
THC electrons
  • THC and THD electrons versus WIND-SWE
  • Time-shift WIND data
  • WIND has plasma waves
  • WIND density calibrated from plasma frequency
  • Five intervals found in summer of 07
  • Correct deficiency due to scpot below Emin
  • Extend Maxwellian spectra to low energies
  • Themis g-factors scaled to 70 in Fall07
  • In retrospect, were due to overestimate ofenergy
    efficiency at low energies

THD electrons
Wind, B
THC, THD, B
THC, THD, Ne
Wind, B
15
Multi-spacecraft Analysis Calibration
verification
  • Find magnetopause crossings and sheath waves
  • Expect quasi-static pressure balance
  • Determine total pressure
  • Ptotal Pion Pelectron PB
  • Show total pressure is constant across
  • Method shows that pressure balance is observed
  • Calibration is working, at least at low energies
  • Higher energy component has been less tested

PTot
PB
Pi
Pe
16
Multi-spacecraft Analysis At the magnetopause
17
Homework
  • Find a THEMIS 2-4 hour interval of your interest
  • Use at least two satellites
  • Plot ion and electron density
  • Plot density derived from spacecraft potential
  • Explain the differences
Write a Comment
User Comments (0)
About PowerShow.com