Title: CS223B Homework 1 Results
1CS223BHomework 1 Results
2Considered 2 Metrics
- Raw score
- Number of pixels in error
- Weighted score
- Car pixels weighted more heavily than non-car
pixels - Range from 50-100
- Formula 40 ( of correct car pixels) 30
(1.0 - of false positive pixels) 20 ( of
correct non-car pixels) 10 (1.0 - of false
negative pixels)
3(No Transcript)
4(No Transcript)
5Best Solutions
- Eric Park, Brian Tran, Joakim Arfvidsson
- 3354 error pixels / score 84.3
- Fraser Cameron, Peter Kimball, Mike Vitus
- 3447 error pixels / score 77.2
- Simon Berring, Anya Petrovskaya, Daniel Tarlow
- 4337 error pixels / score 86.7
- Antoine el Daher
- 4518 error pixels / score 87.2
6Eric Park, Brian Tran, Joakim Arfvidsson
- Road detection
- sample road color from just in front of car
- flood-fill the road using the sampled color
- use the RANSAC to find the edges of the road
- blur and threshold image
- Car edges detection
- Canny
- normalize edges
- extract horizontal and vertical edges from this
result - apply pattern matching
- Use perspective to dismiss false positives
7Eric Park, Brian Tran, Joakim Arfvidsson
8Eric Park, Brian Tran, Joakim Arfvidsson
9Eric Park, Brian Tran, Joakim Arfvidsson
10Fraser Cameron, Peter Kimball, Mike Vitus
- Road finder
- Prewitt edge convolution and a Hough Transform
- Tail light finder
- based on color
- Shadow finder
- looks for dark horizontal edges
- Box finder
- uses data from the above to generate bounding box
- Pixel classifier
- corner finding -gt convex hull to trace car edges
11Fraser Cameron, Peter Kimball, Mike Vitus
Road Finder
Taillight Finder
12Fraser Cameron, Peter Kimball, Mike Vitus
Shadow Finder
Box Finder
Pixel Classifier
13Simon Berring, Anya Petrovskaya, Daniel Tarlow
- Ran four classifiers and combined the results
using a naive Bayes model - boosted Haar classifier detector
- color segmentation
- corner finding
- road finding
14Simon Berring, Anya Petrovskaya, Daniel Tarlow
NaïveBayesModel
Haar Detector
Color Segmentation
CornerFinding
15Antoine el Daher
- Trained several different boosted Haar
classifiers - 2 rear detectors
- 1 "far away car" detector
- 1 side cars" detector
- 1 "tail light" detector
- Ran a consistency checking phase
- Make sure car is in road region at a plausible
depth, eliminate double detections - Ran a refinement phase
- Tighten bounding box around car using "cube"
model of car
16Antoine El Daher
17Antoine El Daher
Taillight Mask
Road Detector
End Result