Title: Simulation of mitochondrial metabolism using multiagents system
1Simulation of mitochondrial metabolism using
multi-agents system
- Charles LALES 1Nicolas PARISEY 2 Jean-Pierre
MAZAT 2 Marie BEURTON-AIMAR 1
1 LaBRI CNRS UMR 5800, Univ. Bordeaux 1, France2
Mitochondrial Physiopathology Lab. INSERM U688,
Univ. Bordeaux 2, France
Bordeaux Universities, FRANCE
2Contents
- Biological problematic mitochondrial
metabolism. - Which modeling paradigm?
- MAS model for 3D membrane
- Overview.
- Granularity of agents.
- Abstraction of molecules.
- Interactions as forces.
- Implementation to simulate phospholipids.
- Conclusion and perspectives.
3Mitochondrion
- Mitochondrion is an organelle which converts
organic materials into cell energy ATP. - It is an endosymbiot
- With its own DNA,
- With its own metabolism.
4Mitochondrion an endosymbiot
its own metabolism
Its own DNA
5Membranes
- Why looking after membranes ?
- Metabolism container
- Metabolism actor
- Problems induiced
- Modeling reconcilable membranes/métabolisme
- Structures complexes
- Structures dynamiques
6Membranes
- Why study mitochondrial membranes ?
- metabolism container,
- metabolism player.
- Problems
- heterogeneous morphologies,
- complex structure,
- dynamical structure.
7Membranes
Rossignol and al., 2004
8Comparatif EDO/SMA
9MAS paradigm?
- Why use differential equations?
- Modeling the whole system macro scale available
data, - Inherent mathematical proves,
- Limitations of this paradigm?
- Do not take into acount individual variabilities,
- Take hardly care of a compartmentalized space,
- Why trying multi-agents paradigm?
- To solve the above limitations,
- It is easier to translate biological hypotheses
as microscopic behaviors.
10Which modeling paradigms?
- Ordinary Differential Equations (ODE).
- Partial Differential Equations (PDE).
- Petri Nets.
- Mutli-Agent Systems (MAS).
11MAS model - overview
- Biological Objects
- reactive BioAgents.
- Time
- discontinuous (time steps) for TimeAgent,
- continuous simulated (events) in futur.
- 3D Space
- continuous coordinates of BioAgents,
- discretized coordinates of GridAgents
- optimisation (neighbourhood),
- diffusion, (temperature, pH,).
12MAS model - granularity
-- molecule set
-- molecule
-- atom set
-- atom
13MAS model - agent granularity
-- molecule set
-- molecule
-- atom set
-- atom
14MAS model - molecule abstraction
- Goals
- 3D Conformation,
- Spatial orientation,
- Inner dynamic.
- BioAgent model
- 1 gravity center,
- n interacting points.
15MAS model - interactions
- A set of forces reflects physical and chemical
properties. - Forces depend on
- Type of interacting points,
- Distance between them.
- Forces take into account
- Forces generate linear mouvements whereas induced
torques generate rotational mouvements
16MAS model - interactions
- 3D rigid body dynamics
- Euler methode to approximate Newtons law of
motion - Quaternions used to manage 3D rotations
Linear mouvement
Rotational mouvement
17MAS design
- A UML Class diagram shows the classes of the
system - A rendering engine uses OpenGL
18(No Transcript)
19Implémentation
20Work in progress
- Parameters calibration
- Quantitative sources (used in molecular dynamics)
- PDB files (RMN, crystallography),
- force fields (physics).
- Qualitative sources (phase diagrams)
- micelles,
- membranes (monolayer, bilayer).
- Simulation of enzymatic reactions.
- Mixing model of membranes and enzymes.
21Work in progress
- Dynamics engine
- Use of Open Dynamics Engine (ODE).
- MAS multi-scaling
- Vertical/horizontal flow of information.
- Constraint management.
- Example of micelles
22Work in progress
- Parameters calibration
- pm(m1)8n
- p parameters to describe interaction function,
- m type of interacting points,
- n molecules.
- Quantitatives sources (used in molecular
dynamics) - PDB files (RMN, cristallography),
- force fields (physics).
- Qualitatives sources (phase diagrams)
- micelles,
- membranes (monolayer, bilayer).
23Work in progress
- Enzymatic reactions
- Typical (tripsine),
- In mitochondria.
- Mixing model of membranes and enzymes
- Dynamics engine
- ODE (Open Dynamics Engine)
- MAS multi-scaling
- Vertical/horizontal flow of information,
- Constraint management.
24Conclusion and perspectives
- Features of the model
- 3D Conformation,
- Spatial orientation,
- Inner dynamic.
- Membrane simulation
- Micelle, monolayer
- Still work to do
- Calibration membranes (bilayers)
- Quantitatives sources (PDB files,...),
- Qualitatives sources (phase diagrams).
- Simulation of enzymatic reactions,
- Mixing simulations of the membranes and the
enzymes.
25Perspectives
26MitoScoP
- Mitochondria in Silico Project (ACI IMPBio).
- Knowledge base on mitochondria,
- Multi-paradigm modeling
- ODE,
- MAS,
- Graphes (Petri Nets),
- Mitochondria simulations framework.
- Team
- Marie BEURTON-AIMAR aimar_at_labri.fr
- Charles LALES - lales_at_labri.fr
- Jean-Pierre MAZAT - JP.Mazat_at_phys-mito.u-bordeaux2
.fr - Christine NAZARET - nazaret_at_sm.u-bordeaux2.fr
- Nicolas PARISEY - nicolas.parisey_at_etud.u-bordeaux2
.fr - Sabine PERES - sabine.peres_at_etud.u-bordeaux2.fr
- Christine REDER - Christine.Reder_at_math.u-bordeaux1
.fr - Thanks for your attention )
27MitoScoP
- Capitalisation de connaissances sur la
mitochondrie, - Modélisation multi-paradigme
- ODE,
- SMA,
- Graphe (Réseau de Pétri).
- Plateforme de simulation pour ces modèles.
28Thanks for your attention )
MitoScoP Mitochondria in Silicon Project
29Thanks for your attention )
- Team
- 1 Charles LALES - lales_at_labri.fr
- 2 Nicolas PARISEY - nicolas.parisey_at_etud.u-bordeau
x2.fr - 2 Jean-Pierre MAZAT - JP.Mazat_at_phys-mito.u-bordeau
x2.fr - 1 Marie BEURTON-AIMAR aimar_at_labri.fr
- Lab.
- 1 LaBRI CNRS UMR 5800, Univ. Bordeaux 1, France
www.labri.fr - 2 Mitochondrial Physiopathology Lab. INSERM U688,
Univ. Bordeaux 2, France - www.phys-mito.u-bordeau
x2.fr - Special thanks to
- Guillaume Beslon, computer sciences professor
BIM INSA, - Jean-Michel Fayard, director BIM INSA.