Simulation of mitochondrial metabolism using multiagents system - PowerPoint PPT Presentation

1 / 8
About This Presentation
Title:

Simulation of mitochondrial metabolism using multiagents system

Description:

... U688, Univ. Bordeaux 2, France ... UMR 5800, Univ. Bordeaux 1, France www.labri. ... INSERM U688, Univ. Bordeaux 2, France - www.phys-mito.u-bordeaux2.fr ... – PowerPoint PPT presentation

Number of Views:129
Avg rating:3.0/5.0
Slides: 9
Provided by: Lal60
Category:

less

Transcript and Presenter's Notes

Title: Simulation of mitochondrial metabolism using multiagents system


1
Simulation of mitochondrial metabolism using
multi-agents system
  • Charles LALES 1Nicolas PARISEY 2 Jean-Pierre
    MAZAT 2 Marie BEURTON-AIMAR 1

1 LaBRI CNRS UMR 5800, Univ. Bordeaux 1, France2
Mitochondrial Physiopathology Lab. INSERM U688,
Univ. Bordeaux 2, France
Bordeaux Universities, FRANCE
2
Contents
  • Biological problematic mitochondrial
    metabolism.
  • Which modeling paradigm?
  • MAS model for 3D membrane
  • Overview.
  • Granularity of agents.
  • Abstraction of molecules.
  • Interactions as forces.
  • Implementation to simulate phospholipids.
  • Conclusion and perspectives.

3
Mitochondrion
  • Mitochondrion is an organelle which converts
    organic materials into cell energy ATP.
  • It is an endosymbiot
  • With its own DNA,
  • With its own metabolism.

4
Mitochondrion an endosymbiot
its own metabolism
Its own DNA
5
Membranes
  • Why looking after membranes ?
  • Metabolism container
  • Metabolism actor
  • Problems induiced
  • Modeling reconcilable membranes/métabolisme
  • Structures complexes
  • Structures dynamiques

6
Membranes
  • Why study mitochondrial membranes ?
  • metabolism container,
  • metabolism player.
  • Problems
  • heterogeneous morphologies,
  • complex structure,
  • dynamical structure.

7
Membranes
Rossignol and al., 2004
8
Comparatif EDO/SMA
9
MAS paradigm?
  • Why use differential equations?
  • Modeling the whole system macro scale available
    data,
  • Inherent mathematical proves,
  • Limitations of this paradigm?
  • Do not take into acount individual variabilities,
  • Take hardly care of a compartmentalized space,
  • Why trying multi-agents paradigm?
  • To solve the above limitations,
  • It is easier to translate biological hypotheses
    as microscopic behaviors.

10
Which modeling paradigms?
  • Ordinary Differential Equations (ODE).
  • Partial Differential Equations (PDE).
  • Petri Nets.
  • Mutli-Agent Systems (MAS).

11
MAS model - overview
  • Biological Objects
  • reactive BioAgents.
  • Time
  • discontinuous (time steps) for TimeAgent,
  • continuous simulated (events) in futur.
  • 3D Space
  • continuous coordinates of BioAgents,
  • discretized coordinates of GridAgents
  • optimisation (neighbourhood),
  • diffusion, (temperature, pH,).

12
MAS model - granularity
-- molecule set
-- molecule
-- atom set
-- atom
13
MAS model - agent granularity
-- molecule set
-- molecule
-- atom set
-- atom
14
MAS model - molecule abstraction
  • Goals
  • 3D Conformation,
  • Spatial orientation,
  • Inner dynamic.
  • BioAgent model
  • 1 gravity center,
  • n interacting points.

15
MAS model - interactions
  • A set of forces reflects physical and chemical
    properties.
  • Forces depend on
  • Type of interacting points,
  • Distance between them.
  • Forces take into account
  • Forces generate linear mouvements whereas induced
    torques generate rotational mouvements

16
MAS model - interactions
  • 3D rigid body dynamics
  • Euler methode to approximate Newtons law of
    motion
  • Quaternions used to manage 3D rotations

Linear mouvement
Rotational mouvement
17
MAS design
  • A UML Class diagram shows the classes of the
    system
  • A rendering engine uses OpenGL

18
(No Transcript)
19
Implémentation
20
Work in progress
  • Parameters calibration
  • Quantitative sources (used in molecular dynamics)
  • PDB files (RMN, crystallography),
  • force fields (physics).
  • Qualitative sources (phase diagrams)
  • micelles,
  • membranes (monolayer, bilayer).
  • Simulation of enzymatic reactions.
  • Mixing model of membranes and enzymes.

21
Work in progress
  • Dynamics engine
  • Use of Open Dynamics Engine (ODE).
  • MAS multi-scaling
  • Vertical/horizontal flow of information.
  • Constraint management.
  • Example of micelles

22
Work in progress
  • Parameters calibration
  • pm(m1)8n
  • p parameters to describe interaction function,
  • m type of interacting points,
  • n molecules.
  • Quantitatives sources (used in molecular
    dynamics)
  • PDB files (RMN, cristallography),
  • force fields (physics).
  • Qualitatives sources (phase diagrams)
  • micelles,
  • membranes (monolayer, bilayer).

23
Work in progress
  • Enzymatic reactions
  • Typical (tripsine),
  • In mitochondria.
  • Mixing model of membranes and enzymes
  • Dynamics engine
  • ODE (Open Dynamics Engine)
  • MAS multi-scaling
  • Vertical/horizontal flow of information,
  • Constraint management.

24
Conclusion and perspectives
  • Features of the model
  • 3D Conformation,
  • Spatial orientation,
  • Inner dynamic.
  • Membrane simulation
  • Micelle, monolayer
  • Still work to do
  • Calibration membranes (bilayers)
  • Quantitatives sources (PDB files,...),
  • Qualitatives sources (phase diagrams).
  • Simulation of enzymatic reactions,
  • Mixing simulations of the membranes and the
    enzymes.

25
Perspectives
26
MitoScoP
  • Mitochondria in Silico Project (ACI IMPBio).
  • Knowledge base on mitochondria,
  • Multi-paradigm modeling
  • ODE,
  • MAS,
  • Graphes (Petri Nets),
  • Mitochondria simulations framework.
  • Team
  • Marie BEURTON-AIMAR aimar_at_labri.fr
  • Charles LALES - lales_at_labri.fr
  • Jean-Pierre MAZAT - JP.Mazat_at_phys-mito.u-bordeaux2
    .fr
  • Christine NAZARET - nazaret_at_sm.u-bordeaux2.fr
  • Nicolas PARISEY - nicolas.parisey_at_etud.u-bordeaux2
    .fr
  • Sabine PERES - sabine.peres_at_etud.u-bordeaux2.fr
  • Christine REDER - Christine.Reder_at_math.u-bordeaux1
    .fr
  • Thanks for your attention )

27
MitoScoP
  • Capitalisation de connaissances sur la
    mitochondrie,
  • Modélisation multi-paradigme
  • ODE,
  • SMA,
  • Graphe (Réseau de Pétri).
  • Plateforme de simulation pour ces modèles.

28
Thanks for your attention )
MitoScoP Mitochondria in Silicon Project
29
Thanks for your attention )
  • Team
  • 1 Charles LALES - lales_at_labri.fr
  • 2 Nicolas PARISEY - nicolas.parisey_at_etud.u-bordeau
    x2.fr
  • 2 Jean-Pierre MAZAT - JP.Mazat_at_phys-mito.u-bordeau
    x2.fr
  • 1 Marie BEURTON-AIMAR aimar_at_labri.fr
  • Lab.
  • 1 LaBRI CNRS UMR 5800, Univ. Bordeaux 1, France
    www.labri.fr
  • 2 Mitochondrial Physiopathology Lab. INSERM U688,
    Univ. Bordeaux 2, France - www.phys-mito.u-bordeau
    x2.fr
  • Special thanks to
  • Guillaume Beslon, computer sciences professor
    BIM INSA,
  • Jean-Michel Fayard, director BIM INSA.
Write a Comment
User Comments (0)
About PowerShow.com