On Coded Mary Frequency Keying - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

On Coded Mary Frequency Keying

Description:

Narrow band. A,J, Han Vinck Permutation codes. 8. University Duisburg-Essen ... for impulsive and narrow band noise. provides frequency and time diversity ... – PowerPoint PPT presentation

Number of Views:91
Avg rating:3.0/5.0
Slides: 56
Provided by: vin51
Category:

less

Transcript and Presenter's Notes

Title: On Coded Mary Frequency Keying


1
On Coded M-ary Frequency Keying
  • A.J. Han Vinck

2
Content
  • Motivation
  • Impulsive noise, broadcast, background
  • Definition
  • Convolutional permutation code
  • Random access code

3
Motivation
  • We want to use constant envelope modulation
    M-FSK
  • Error correcting codes for
  • Impulsive noise (broad band)
  • Permanent disturbances (narrow band)
  • Back ground noise

4
idea
Transmit messages as ? sequences (code words)
of length M where all M symbols are
different ? minimum distance ( of
differences) D
Example M 3 D 2 Code 123 312 231
132 321 213
f
time
5
Communication structure example
( 3,2,1 )
encoder
modulator
message
t
M-FSK or PPM
f
Time and frequency diversity !
t
  • gt T
  • gt T
  • gt T

3 Energy detectors
f
6
2 Code words M 5 at D 3
C1 1,2,4,3,5 C2 1,2,3,5,4
frequency
time
7
narrow band noise
C1 1,2,4,3,5
frequency
Narrow band
time
8
broad band noise (impulse)
broad band
C1 1,2,4,3,5
frequency
time
9
background noise
C1 1,2,4,3,- C2 1,2,-,5,4 Both code words 4
agreements!
frequency
insert delete
time
10
Performance for energy/threshold detector
  • Error events agree with codewords in ? 1
    position
  • ? D error events are needed
  • to create an additional codeword or detection
    error

11
Summary code constructions
It can be shown that Simple code constructions
exist for D 2 (all permutations) D
3 ( all even permutations) D M ( all
cyclic shifts ) D M-1, where M is prime
12
Non-coherent detection (FFT)
Envelope detector
y1
filter matched to f1
1
Quantize gt Th 1 lt Th 0
Envelope detector
y2
filter matched to f2
0
X
???
???
Envelope detector
yM
0
filter matched to fM
sample
1 0 0 0
transmit
? ? ? ?
Detect Presence of code sequence
0 0 1 0
? ? ? ?
0 1 0 0
? ? ? ?
0 0 0 1
? ? ? ?
13
Decision matrix structure
hard soft softer
softest
1 0 0 1
1 0 0 1
1 3 4 1
10 3 2 11
0 0 1 0
1 1 1 0
3 1 1 0
3 9 9 2
0 1 0 0
0 1 0 0
2 2 3 4
4 6 1 0
0 0 0 0
0 0 1 1
4 4 2 2
1 1 7 4
select above ranking
calculate largest threshold T
likelihoods
like adding received energy
0 0 0 0
Needs full channel knowledge
T.6E1/2
0 0 0 0
1 1 1 1
0 0 0 0
complexity
14
problem
  • Complexity of decoding (exhaustive search)
  • Low efficiency

15
Coding gain
  • Coding gain (soft) for AWGN only

Pe 10-1 10-2
10-3
M 4, D 4 3 dB !
uncoded
coded
0 3 6
dB
16
Permutation convolutional codes
0
213
mapping
1
Dfree ( permutation conv. code) 5 3 8
IDEA convert binary output to permutation
codewords keep ( or increase) distance if
possible!
17
Conversion binary to M-ary
Distance tables
  • conv. code output permutation code word
  • 00 01 10 11 231 213 132 123
  • 00 0 1 1 2 231 0 2 2
    3
  • 01 1 0 2 1 213 2 0 3
    2
  • 10 1 2 0 1 132 2 3 0
    2
  • 11 2 1 1 0 123 3 2 2
    0

1!
18
For R 1/2
  • for constraint length 2 convolutional code free
    distance 5
  • After mapping Permutation free distance 8
  • ( shortest path has length 3)
  • More distance increased mappings exist
  • Ex D 2 !
  • 4 bits (16 symbols) ? M 6
  • 5 bits (32 symbols) ? M 7
  • 6 bits (64 symbols) ? M 8

19
Dfree2
Dfree8
Dfree8
20
Code partitioning A lt n M users D n-1
n
n
n
???
M
???
???
???
User 1
User 2
User M-1
D n-1 C M (M-1)
differences n-1 ? agreements (
interference ) 1 ? Pe 0! ? lt n active users
can never create a non participating code
word! Normalized sum rate same as single user!
21
Simple code using permutation codes
  • M prime calculations modulo M
  • M-1 Users 0 lt Ilt M
  • Message 0 ? m lt M
  • n ? M
  • encode message m for user I gt o as
  • CI(m) ( m , I ) 1 1 ? ? ? 1
  • 0 1 ? ? ? n-1
  • signature
  • CI(m) is a permutation code word for a code with
    D n-1

22
example
  • M 5, n 3 user 2
  • Decoding for user I check for I m

( 3, 2 ) 1 1 1 ( 3, 0, 2 )
0 1 2
23
Error probability for n ? A ? M active users
For permutation codes
For random codes
Note R(TDMA)
24
Performance
M 128, n 4
A 24
10-1
random
A 16
Pe
A 75
A 8
M 256, n 8
10-3
A 50
10-5
.1 .2 .3
25
conclusions
  • M-FSK connected with Permutation codes
  • As error correcting codes
  • for impulsive and narrow band noise
  • provides frequency and time diversity
  • As multi user codes with known interference
  • Extension to larger M gt 4 easy

26
Some references
  • A.J. Han Vinck, Coded Modulation for PLC, AEU,
    Vol. 2000, pp. 45-49
  • H.C. Ferreira and A.J. Han Vinck, Interference
    cancellation with permutation trellis code, VTC,
    Fall 2000, pp. 4.5.1.3.1.- 7
  • J. Haering and A.J. Han Vinck, Performance bounds
    for optimum and suboptimum reception under Class
    A impulsive noise, IEEE Tr. Comm. July 2002.
  • O. Hooijen, Ph.D. Thesis, University of Essen,
    1998, Aspects of residential Powerline
    communications.
  • A.J. Han Vinck and J. Keuning, On the Capacity of
    the T-user M-frequency Multiple Access Channel,
    IEEE Trans. Inf. Th., Nov. 1996, pp. 2235-238.

27
Reed-Muller based codes
  • Starting code m 1 C 00,01,10,11
  • has minimum distance 2m-1
  • 2m1 code words U of length 2m
  • NEW code of with 2m2 code words of length 2m1
  • (U,U) and (U,U)
  • ? distance (U,U), (U,U) 2m
  • ? distance (U,U), (V,V) 2 2m-1 2m
  • ? distance (U,U), (V,V) 2 2m-1 2m
    (use compl.prop.)

28
Construction by example (m3 layers)
  • Start Remove 000 and 111 from all RM codes
  • Layer 1 m 3 231-2 14 code words
    distance 23-1 4
  • 0000,1111 0011,1100 0101,1010
  • 2. Layer 2 m 2 221-2 6 code words
    distance 222-1 4
  • 0000,1111 0000,1111 0000,1111
    0000,1111 0000,1111 0000,1111
  • 0011,0011 0101,0101 0110,0110
    1010,1010 1001,1001 1100,1100
  • 3. Layer 3 m 1 211-2 2 code words
    distance 421-1 4
  • 0000,1111 0000,1111
  • 0011,0011 0011,0011 01234567 10325476
  • 0101,0101 1010,1010
  • PROPERTY all cloumns are different d 2m-1
    C (2m-1 2)(2m-1 2) ??? 2

29
Multi user communication
  • Binary transmission
  • 1 Transmit code sequence
  • 0 transmit common sequence
  • For A active users no other code word generated
    for
  • A ( agreements ? M-D ) lt M
  • minimum distance D

30
Multi user communication
  • Performance M-ary sequences of length M,
  • SUM-RATE
  • Example M 5, D 4 C 120
  • A lt 5 R ? 4/25 lt 1/5
  • Note for TDMA R lt 5LogM/600 log5/120

31
Dfree2
Dfree8
Dfree8
32
Dfree8
33
Example M 5
0 1 2 0 2 4 0 3 1 0 4 3 1 2 3 1 3 0 1
4 2 1 0 4 2 3 4 2 4 1 2 0 3 2 1 0 3 4 0
3 0 2 3 1 4 3 2 1 4 0 1 4 1 3 4 2 0
4 3 2
4 users ? 2 active D 2 n D 1 R
2log25/15 RTDMA 2log25/20
Codewords for user 4
34
Non-coherent detection Quadrature receiver
using correlators
()2
cos2?fit
?
sin2?fit
()2
35
Code parameters (1)
  • It can be shown that
  • Q1 when do we achieve equality?
  • Q2 if not, what is the upperbound
  • References
  • -Ian Blake, Permutation codes for discrete
    channels (1975, IT)
  • -P. Frankl and M. Deza, On the max. of
    Permutations with
  • given Max. Or Min. Distance (19977, Jrnl of
    Comb. Th.)

36
Code parameters (2)
  • Simple code constructions D 2, 3, M
  • all cases M lt 7 solved
  • Interesting cases left ?

D 2 3 4 5 6 7 6 x x x 18
x C 18 is the Klöve (2000) result 7 x x
? ? x x proof that the max code size is
18 8 x x ? ? x x for D 5, M
6. 9 x x ? ? ? X M! 720
possible code words 10 x x ? ? ? ?
37
Code constructions
  • D M
  • D 2
  • D 3
  • D M-1
  • others

38
Upperbound on cardinality
  • Order codewords specified by set of M-D symbols
  • Set 1 1, 2, x, x, x 2, 1, x, x, x
  • Set 2 x, 1, x, 2, x x, 2, x, 1, x
  • Set 3 x. 1, 2, x, x x, 2, 1, x, x
  • etc.
  • For distance D, set constains ? (M-D)! D
    codewords
  • There are different sets.
  • Hence

39
Simple codes D M
  • Cyclic permutation of M integers has D M
  • C M! / (M-1)! M
  • Example 1 2 3
  • 3 1 2
  • 2 3 1

40
Simple codes D 2
  • The code with all M! permutation has D 2
  • C M! / (2-1)! M!
  • Proof
  • All symbols are different
  • Codewords differ in at least 2 positions
  • x x a x x x b x
  • x x b x x x a x

41
Simple codes D M-1
  • Construction for prime P example M 3
  • - starting sets B 0 1 2
  • 2B 0 2 1
  • - add constant vector
  • B 0 ? 0 1 2 2B 0 ? 0 2 1
  • B 1 ? 1 2 0 2B 1 ? 1 0 2
  • B 2 ? 2 0 1 2B 2 ? 2 1 0
  • In general C M!/(M-2)! M(M-1)

2
3
42
Codes for D 3
  • The class of M! Permutations can be divided into
  • M! / 2 ODD and M! / 2 EVEN permutations
  • for the EVEN permutations D 3
  • Example
  • 1 2 3 4
  • 2 1 4 3
  • 3 4 1 2
  • 1 2 3 4

even of crossings
43
Codes for D 3 (alternative proof)
  • Take all M! Permutations
  • Remove distance 2 code words
  • fix 2 positions and throw away all codewords at
    distance 2 (needs more explanation)

44
Some special optimum cases
  • The Mathieu groups
  • M11 D 8 C 7920
  • M12 D 8 C 95040
  • Codes with distance D M-2 exist for
  • M 1 pn C pn(1pn)(pn-1)

45
Mapping results
  • Distance increasing
  • Distance conservative

46
Distance increased mapping results
  • K 4 (16 symbols)
  • D 1 M 5 use M 4 and extend
  • D 2 M 6 start with D 5, C 18
  • K 5 (32 symbols)
  • D 2 M 7 use M 6 and extend
  • K 6 (64 symbols)
  • D 2 M 8 use M 7 and extend

47
Distance increased mapping
  • Idea use permutation code larger distance
  • less code words
  • Example M 4 D 3 C 12
  • 000 001 010 011 100 101 110 111
  • 1234 1342 1423 3241 4132 2314 2431 2143
  • 011 2 1 1 0 3 2 2 1
  • 3241 3 3 4 0 4 4 3 3

48
Extension to larger M
  • Idea
  • 00 01 10 11
  • 231 213 132 123 D1
  • 000 001 010 011 100 101 110 111
  • 4231 4213 4132 4123 3241 3214 3142 3124
  • exchange 3 and 4 to increase the distance

49
Communication structure
k
n
Convolutional encoder
mapping
M-tuples
encoding structure
R
Y
Non-coherent demodulation
ML-decoding
estimate
decoding structure
50
Table M 4 ( 4! 24 Words )
  • 0000 0001 0010 0011 0100 0101 0110 0111
  • 1234 1243 1324 1342 1423 1432 2134 2143
  • 1000 1001 1010 1011 1100 1101 1110 1111
  • 3214 3241 2314 2341 3421 3412 3124 3142
  • Distance conservative mapping! (no increase in D)
  • Construction look for smallest M sucht that 2k ?
    M!

51
Non-coherent detection performance
  • Decoder outputs sequence at minimum distance
  • Error if noise generates valid sequence
  • Advantage time and frequency diversity
  • robusts against Broad- and narrowband noise

1 0 0 0
1 0 1 0
Detect Presence of code sequence
0 0 1 0
0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 1
0 0 1 1
52
Performance minimum distance decoding
  • NOTE Sequences have minimum distance D
  • Errors agree with sequences in only 1 positions
  • gt D-1 errors are needed to create another
    sequence
  • If E correct symbols disappear due to background
    noise
  • gt D-1-E errors are needed to create decoding
    errors

53
Channel capacity M-FSK multi-access (cont)
  • Sender 1 1,2, ? ? ?, M
  • Sender 2 1,2, ? ? ?, M
  • ? ? ? Y 2M -1
  • Sender N 1,2, ? ? ?, M
    output set of input frequencies
  • Example for M 3 input 1, 2, 3 output
    (1), (2), (3), (1,3), (1,2), (2,3), (1,2,3)
  • SUM CAPACITY ? M-1 bits/transm.
  • RANDOM ACCESS CAPACITY ?ln2 (M-1) bits/transm
  • Note Simple time sharing gives R log2 M
    bits/transm.

54
M-FSK multi-access (cont)
  • Capacity obtaining group time sharing!
  • User M2 M 3 (2bits/tr) M 4
    (3 bits/tr.)
  • I 0 1 0 1 0 1
  • I1 0 2 0 2
  • I2 0 3
  • Output (0),(1) (0,1),(0,2),(1,2)
    (0,1),(0,2),(0,3)
  • Y (0) (0), (1,2,3)
  • (0,1,2),(0,1,3),(0,2,3)

Group I
55
Interference property
For minimum distance D M-1
difference C M(M-1) Maximum
interference M - D 1 agreement CONCLUSIO
N up to M-1 users uniquely detectable always
one unique position left
Write a Comment
User Comments (0)
About PowerShow.com