Title: On Coded Mary Frequency Keying
1On Coded M-ary Frequency Keying
2Content
- Motivation
- Impulsive noise, broadcast, background
- Definition
- Convolutional permutation code
- Random access code
3Motivation
- We want to use constant envelope modulation
M-FSK - Error correcting codes for
- Impulsive noise (broad band)
- Permanent disturbances (narrow band)
- Back ground noise
4idea
Transmit messages as ? sequences (code words)
of length M where all M symbols are
different ? minimum distance ( of
differences) D
Example M 3 D 2 Code 123 312 231
132 321 213
f
time
5Communication structure example
( 3,2,1 )
encoder
modulator
message
t
M-FSK or PPM
f
Time and frequency diversity !
t
3 Energy detectors
f
62 Code words M 5 at D 3
C1 1,2,4,3,5 C2 1,2,3,5,4
frequency
time
7 narrow band noise
C1 1,2,4,3,5
frequency
Narrow band
time
8 broad band noise (impulse)
broad band
C1 1,2,4,3,5
frequency
time
9 background noise
C1 1,2,4,3,- C2 1,2,-,5,4 Both code words 4
agreements!
frequency
insert delete
time
10Performance for energy/threshold detector
- Error events agree with codewords in ? 1
position - ? D error events are needed
- to create an additional codeword or detection
error
11Summary code constructions
It can be shown that Simple code constructions
exist for D 2 (all permutations) D
3 ( all even permutations) D M ( all
cyclic shifts ) D M-1, where M is prime
12Non-coherent detection (FFT)
Envelope detector
y1
filter matched to f1
1
Quantize gt Th 1 lt Th 0
Envelope detector
y2
filter matched to f2
0
X
???
???
Envelope detector
yM
0
filter matched to fM
sample
1 0 0 0
transmit
? ? ? ?
Detect Presence of code sequence
0 0 1 0
? ? ? ?
0 1 0 0
? ? ? ?
0 0 0 1
? ? ? ?
13Decision matrix structure
hard soft softer
softest
1 0 0 1
1 0 0 1
1 3 4 1
10 3 2 11
0 0 1 0
1 1 1 0
3 1 1 0
3 9 9 2
0 1 0 0
0 1 0 0
2 2 3 4
4 6 1 0
0 0 0 0
0 0 1 1
4 4 2 2
1 1 7 4
select above ranking
calculate largest threshold T
likelihoods
like adding received energy
0 0 0 0
Needs full channel knowledge
T.6E1/2
0 0 0 0
1 1 1 1
0 0 0 0
complexity
14problem
- Complexity of decoding (exhaustive search)
- Low efficiency
15Coding gain
- Coding gain (soft) for AWGN only
Pe 10-1 10-2
10-3
M 4, D 4 3 dB !
uncoded
coded
0 3 6
dB
16Permutation convolutional codes
0
213
mapping
1
Dfree ( permutation conv. code) 5 3 8
IDEA convert binary output to permutation
codewords keep ( or increase) distance if
possible!
17Conversion binary to M-ary
Distance tables
- conv. code output permutation code word
- 00 01 10 11 231 213 132 123
- 00 0 1 1 2 231 0 2 2
3 - 01 1 0 2 1 213 2 0 3
2 - 10 1 2 0 1 132 2 3 0
2 - 11 2 1 1 0 123 3 2 2
0
1!
18For R 1/2
- for constraint length 2 convolutional code free
distance 5 - After mapping Permutation free distance 8
- ( shortest path has length 3)
- More distance increased mappings exist
- Ex D 2 !
- 4 bits (16 symbols) ? M 6
- 5 bits (32 symbols) ? M 7
- 6 bits (64 symbols) ? M 8
19Dfree2
Dfree8
Dfree8
20Code partitioning A lt n M users D n-1
n
n
n
???
M
???
???
???
User 1
User 2
User M-1
D n-1 C M (M-1)
differences n-1 ? agreements (
interference ) 1 ? Pe 0! ? lt n active users
can never create a non participating code
word! Normalized sum rate same as single user!
21Simple code using permutation codes
- M prime calculations modulo M
- M-1 Users 0 lt Ilt M
- Message 0 ? m lt M
- n ? M
- encode message m for user I gt o as
- CI(m) ( m , I ) 1 1 ? ? ? 1
- 0 1 ? ? ? n-1
- signature
- CI(m) is a permutation code word for a code with
D n-1
22example
- M 5, n 3 user 2
- Decoding for user I check for I m
( 3, 2 ) 1 1 1 ( 3, 0, 2 )
0 1 2
23Error probability for n ? A ? M active users
For permutation codes
For random codes
Note R(TDMA)
24Performance
M 128, n 4
A 24
10-1
random
A 16
Pe
A 75
A 8
M 256, n 8
10-3
A 50
10-5
.1 .2 .3
25conclusions
- M-FSK connected with Permutation codes
- As error correcting codes
- for impulsive and narrow band noise
- provides frequency and time diversity
- As multi user codes with known interference
- Extension to larger M gt 4 easy
26Some references
- A.J. Han Vinck, Coded Modulation for PLC, AEU,
Vol. 2000, pp. 45-49 - H.C. Ferreira and A.J. Han Vinck, Interference
cancellation with permutation trellis code, VTC,
Fall 2000, pp. 4.5.1.3.1.- 7 - J. Haering and A.J. Han Vinck, Performance bounds
for optimum and suboptimum reception under Class
A impulsive noise, IEEE Tr. Comm. July 2002. - O. Hooijen, Ph.D. Thesis, University of Essen,
1998, Aspects of residential Powerline
communications. - A.J. Han Vinck and J. Keuning, On the Capacity of
the T-user M-frequency Multiple Access Channel,
IEEE Trans. Inf. Th., Nov. 1996, pp. 2235-238.
27 Reed-Muller based codes
- Starting code m 1 C 00,01,10,11
- has minimum distance 2m-1
- 2m1 code words U of length 2m
- NEW code of with 2m2 code words of length 2m1
- (U,U) and (U,U)
- ? distance (U,U), (U,U) 2m
- ? distance (U,U), (V,V) 2 2m-1 2m
- ? distance (U,U), (V,V) 2 2m-1 2m
(use compl.prop.)
28Construction by example (m3 layers)
- Start Remove 000 and 111 from all RM codes
- Layer 1 m 3 231-2 14 code words
distance 23-1 4 - 0000,1111 0011,1100 0101,1010
- 2. Layer 2 m 2 221-2 6 code words
distance 222-1 4 - 0000,1111 0000,1111 0000,1111
0000,1111 0000,1111 0000,1111 - 0011,0011 0101,0101 0110,0110
1010,1010 1001,1001 1100,1100 -
- 3. Layer 3 m 1 211-2 2 code words
distance 421-1 4 - 0000,1111 0000,1111
- 0011,0011 0011,0011 01234567 10325476
- 0101,0101 1010,1010
-
- PROPERTY all cloumns are different d 2m-1
C (2m-1 2)(2m-1 2) ??? 2
29Multi user communication
- Binary transmission
- 1 Transmit code sequence
- 0 transmit common sequence
- For A active users no other code word generated
for - A ( agreements ? M-D ) lt M
- minimum distance D
30Multi user communication
- Performance M-ary sequences of length M,
- SUM-RATE
- Example M 5, D 4 C 120
-
- A lt 5 R ? 4/25 lt 1/5
- Note for TDMA R lt 5LogM/600 log5/120
31Dfree2
Dfree8
Dfree8
32Dfree8
33Example M 5
0 1 2 0 2 4 0 3 1 0 4 3 1 2 3 1 3 0 1
4 2 1 0 4 2 3 4 2 4 1 2 0 3 2 1 0 3 4 0
3 0 2 3 1 4 3 2 1 4 0 1 4 1 3 4 2 0
4 3 2
4 users ? 2 active D 2 n D 1 R
2log25/15 RTDMA 2log25/20
Codewords for user 4
34Non-coherent detection Quadrature receiver
using correlators
()2
cos2?fit
?
sin2?fit
()2
35Code parameters (1)
- It can be shown that
- Q1 when do we achieve equality?
- Q2 if not, what is the upperbound
- References
- -Ian Blake, Permutation codes for discrete
channels (1975, IT) - -P. Frankl and M. Deza, On the max. of
Permutations with - given Max. Or Min. Distance (19977, Jrnl of
Comb. Th.)
36Code parameters (2)
- Simple code constructions D 2, 3, M
- all cases M lt 7 solved
- Interesting cases left ?
D 2 3 4 5 6 7 6 x x x 18
x C 18 is the Klöve (2000) result 7 x x
? ? x x proof that the max code size is
18 8 x x ? ? x x for D 5, M
6. 9 x x ? ? ? X M! 720
possible code words 10 x x ? ? ? ?
37Code constructions
38Upperbound on cardinality
- Order codewords specified by set of M-D symbols
- Set 1 1, 2, x, x, x 2, 1, x, x, x
- Set 2 x, 1, x, 2, x x, 2, x, 1, x
- Set 3 x. 1, 2, x, x x, 2, 1, x, x
- etc.
- For distance D, set constains ? (M-D)! D
codewords - There are different sets.
- Hence
39Simple codes D M
- Cyclic permutation of M integers has D M
- C M! / (M-1)! M
- Example 1 2 3
- 3 1 2
- 2 3 1
40Simple codes D 2
- The code with all M! permutation has D 2
- C M! / (2-1)! M!
- Proof
- All symbols are different
- Codewords differ in at least 2 positions
- x x a x x x b x
- x x b x x x a x
41Simple codes D M-1
- Construction for prime P example M 3
- - starting sets B 0 1 2
- 2B 0 2 1
- - add constant vector
- B 0 ? 0 1 2 2B 0 ? 0 2 1
- B 1 ? 1 2 0 2B 1 ? 1 0 2
- B 2 ? 2 0 1 2B 2 ? 2 1 0
- In general C M!/(M-2)! M(M-1)
2
3
42Codes for D 3
- The class of M! Permutations can be divided into
- M! / 2 ODD and M! / 2 EVEN permutations
- for the EVEN permutations D 3
- Example
- 1 2 3 4
- 2 1 4 3
- 3 4 1 2
- 1 2 3 4
even of crossings
43Codes for D 3 (alternative proof)
- Take all M! Permutations
- Remove distance 2 code words
- fix 2 positions and throw away all codewords at
distance 2 (needs more explanation)
44Some special optimum cases
- The Mathieu groups
- M11 D 8 C 7920
- M12 D 8 C 95040
- Codes with distance D M-2 exist for
- M 1 pn C pn(1pn)(pn-1)
45Mapping results
- Distance increasing
- Distance conservative
46Distance increased mapping results
- K 4 (16 symbols)
- D 1 M 5 use M 4 and extend
- D 2 M 6 start with D 5, C 18
- K 5 (32 symbols)
- D 2 M 7 use M 6 and extend
- K 6 (64 symbols)
- D 2 M 8 use M 7 and extend
47Distance increased mapping
- Idea use permutation code larger distance
- less code words
- Example M 4 D 3 C 12
- 000 001 010 011 100 101 110 111
- 1234 1342 1423 3241 4132 2314 2431 2143
- 011 2 1 1 0 3 2 2 1
- 3241 3 3 4 0 4 4 3 3
48Extension to larger M
- Idea
- 00 01 10 11
- 231 213 132 123 D1
- 000 001 010 011 100 101 110 111
- 4231 4213 4132 4123 3241 3214 3142 3124
- exchange 3 and 4 to increase the distance
49Communication structure
k
n
Convolutional encoder
mapping
M-tuples
encoding structure
R
Y
Non-coherent demodulation
ML-decoding
estimate
decoding structure
50Table M 4 ( 4! 24 Words )
- 0000 0001 0010 0011 0100 0101 0110 0111
- 1234 1243 1324 1342 1423 1432 2134 2143
- 1000 1001 1010 1011 1100 1101 1110 1111
- 3214 3241 2314 2341 3421 3412 3124 3142
- Distance conservative mapping! (no increase in D)
- Construction look for smallest M sucht that 2k ?
M!
51Non-coherent detection performance
- Decoder outputs sequence at minimum distance
- Error if noise generates valid sequence
- Advantage time and frequency diversity
- robusts against Broad- and narrowband noise
1 0 0 0
1 0 1 0
Detect Presence of code sequence
0 0 1 0
0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 1
0 0 1 1
52Performance minimum distance decoding
- NOTE Sequences have minimum distance D
- Errors agree with sequences in only 1 positions
- gt D-1 errors are needed to create another
sequence - If E correct symbols disappear due to background
noise - gt D-1-E errors are needed to create decoding
errors
53Channel capacity M-FSK multi-access (cont)
- Sender 1 1,2, ? ? ?, M
- Sender 2 1,2, ? ? ?, M
- ? ? ? Y 2M -1
- Sender N 1,2, ? ? ?, M
output set of input frequencies - Example for M 3 input 1, 2, 3 output
(1), (2), (3), (1,3), (1,2), (2,3), (1,2,3) - SUM CAPACITY ? M-1 bits/transm.
- RANDOM ACCESS CAPACITY ?ln2 (M-1) bits/transm
-
- Note Simple time sharing gives R log2 M
bits/transm.
54M-FSK multi-access (cont)
- Capacity obtaining group time sharing!
- User M2 M 3 (2bits/tr) M 4
(3 bits/tr.) - I 0 1 0 1 0 1
- I1 0 2 0 2
- I2 0 3
- Output (0),(1) (0,1),(0,2),(1,2)
(0,1),(0,2),(0,3) - Y (0) (0), (1,2,3)
- (0,1,2),(0,1,3),(0,2,3)
Group I
55Interference property
For minimum distance D M-1
difference C M(M-1) Maximum
interference M - D 1 agreement CONCLUSIO
N up to M-1 users uniquely detectable always
one unique position left