Improved Inference for Unlexicalized Parsing - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Improved Inference for Unlexicalized Parsing

Description:

Improved Inference. for Unlexicalized Parsing. Slav Petrov ... Multi-lingual unlexicalized parsing. Thank You! Parser available at. http://nlp.cs.berkeley.edu ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 32
Provided by: EEC8
Category:

less

Transcript and Presenter's Notes

Title: Improved Inference for Unlexicalized Parsing


1
Improved Inference for Unlexicalized Parsing
  • Slav Petrov and Dan Klein

2
Unlexicalized Parsing
Petrov et al. 06
  • Hierarchical, adaptive refinement

91.2 F1 score on Dev Set (1600 sentences)
3
  • 1621 min

4
Coarse-to-Fine Parsing
Goodman 97, CharniakJohnson 05
5
Prune?
  • For each chart item Xi,j, compute posterior
    probability

lt threshold
E.g. consider the span 5 to 12
coarse
refined
6
  • 1621 min
  • 111 min
  • (no search error)

7
Multilevel Coarse-to-Fine Parsing
Charniak et al. 06
  • Add more rounds of
  • pre-parsing
  • Grammars coarser
  • than X-bar

8
Hierarchical Pruning
  • Consider again the span 5 to 12

coarse
split in two
split in four
split in eight
9
Intermediate Grammars
X-BarG0
G
10
  • 1621 min
  • 111 min
  • 35 min
  • (no search error)

11
State Drift (DT tag)
12
Projected Grammars
X-BarG0
G
13
Estimating Projected Grammars
  • Nonterminals?

NP0
NP1
VP1
VP0
S0
S1
Nonterminals in ?(G)
Nonterminals in G
14
Estimating Projected Grammars
  • Rules?

S ? NP VP
S1 ? NP1 VP1 0.20 S1 ? NP1 VP2 0.12 S1 ?
NP2 VP1 0.02 S1 ? NP2 VP2 0.03 S2 ? NP1
VP1 0.11 S2 ? NP1 VP2 0.05 S2 ? NP2 VP1
0.08 S2 ? NP2 VP2 0.12
15
Estimating Projected Grammars
Corazza Satta 06
Estimating Grammars
0.56
16
Calculating Expectations
  • Nonterminals
  • ck(X) expected counts up to depth k
  • Converges within 25 iterations (few seconds)
  • Rules

17
  • 1621 min
  • 111 min
  • 35 min
  • 15 min
  • (no search error)

18
Parsing times
X-BarG0
G
19
Bracket Posteriors
(after G0)
20
Bracket Posteriors (after G1)
21
Bracket Posteriors
(Movie)
(Final Chart)
22
Bracket Posteriors (Best Tree)
23
Parse Selection
  • Computing most likely unsplit tree is NP-hard
  • Settle for best derivation.
  • Rerank n-best list.
  • Use alternative objective function.

24
Parse Risk Minimization
Titov Henderson 06
  • Expected loss according to our beliefs
  • TT true tree
  • TP predicted tree
  • L loss function (0/1, precision, recall, F1)
  • Use n-best candidate list and approximate
  • expectation with samples.

25
Reranking Results
26
Dynamic Programming
Matsuzaki et al. 05 Approximate posterior
parse distribution
à la Goodman 98 Maximize number of expected
correct rules
27
Dynamic Programming Results
28
Final Results (Efficiency)
  • Berkeley Parser
  • 15 min
  • 91.2 F-score
  • Implemented in Java
  • Charniak Johnson 05 Parser
  • 19 min
  • 90.7 F-score
  • Implemented in C

29
Final Results (Accuracy)
30
Conclusions
  • Hierarchical coarse-to-fine inference
  • Projections
  • Marginalization
  • Multi-lingual unlexicalized parsing

31
Thank You!
  • Parser available at
  • http//nlp.cs.berkeley.edu
Write a Comment
User Comments (0)
About PowerShow.com