Title: ROLE OF RESEARCH TEAM Participant 2
1ROLE OF RESEARCH TEAM(Participant 2)
XPOSE Mid-term review meeting 20 July 2002, CNRS
Building Center, Paris
ILIL Intense Laser Irradiation Laboratory IPCF
- Area della Ricerca del CNR via G. Moruzzi, 1
56124 Pisa (Italy) Leonida A. Gizzi (Scientist
in charge)
2IPCF A NEW CNR INSTITUTE
- Istituto per i Processi Chimico-Fisici is a new
Institute of the Italian National Research
Council. It was established in September 2000 as
a result of the merging of the following
institutes - Centro Studi Chimico-Fisici sull'Interazione Luce
Materia - CFILM (Area della ricerca di Bari) - Gruppo Nazionale di Struttura della Materia -
GNSM (PI) - Istituto di Chimica Analitica e Strumentale -
ICAS (Area della ricerca di Pisa) - Istituto di Chimica Quantistica ed Energetica
Molecolare-ICQEM (Area della ricerca di Pisa) - Istituto di Fisica Atomica e Molecolare IFAMÂ
(Area della ricerca di Pisa) - Istituto di Tecniche Spettroscopiche-ITS.
- The mission of IPCF is to carry out research,
technological transfer and training in the
following thematic areas - Matter and radiation structure, dynamics,
changes, reactivity and interactions, also in
extreme conditions - Computational, analytical and spectroscopic
techniques and innovative applications - Modelling of materials and complex systems.
- The Intense Laser Irradiation Laboratory (ILIL)
operates within IPCF carrying out research,
technological transfer and training on high power
laser-matter interactions, related topics and
multi-disciplinar applications.
3THE INTENSE LASER IRRADIATION LABORATORY
The ILIL staff Research Antonio Giulietti Danilo
Giulietti Leonida A. Gizzi Technical Walter
Baldeschi Antonella Rossi Azenio Salvetti
Ph.D students Marco Galimberti Luca Labate
Graduate students From University of Pisa Evelina
Breschi Alessio Misuri Monica Sanna Flavio
Zamponi Abel Bagamery ()
Post-doctoral Roberto Numico() Paolo Tomassini
Degree students (2002) Carlo A. Cecchetti Petra
Koester Gabriele Palladino Paola Squillacioti
http//xray.ipcf.pi.cnr.it
() XPOSE funding
4CONTRIBUTIONS TO TASKS AND TRAINING
- TASK 8 X-ray optics for laser plasma sources
- Experiments at LOA on femtosecond interactions
with preformed plasmas - Joint experiment with participant 6
- Numerical simulations of non-linear processes in
fs interactions - Strong involvement of young researcher (R.
Numico) - TASK 3 Shock wave propagation
- Development of a suitable laser-plasma source
- Training of young researchers (A. Bagamery)
- Interaction with participant 8 through trained
degree student - Time resolved spectroscopy of highly charged ions
- Perspective interactions with participant 3
5HARD X-RAY MEASUREMENTS
CPA interaction above 1019 W/cm2 with underdense
preformed plasma was obtained using the LOA
Salle Jaune laser.
Target tickness 0.1 and 1.0 µm
ASE intensity2x1013 W/cm2
ASE duration10ns
Max CPA intensity1020 W/cm2
CPA duration30 fs
Laser wavelength825 nm
CPA energy on target800 mJ
CPA/ASE (contrast ratio)2x106
LOA-ENSTA
6BREMSSTRAHLUNG TECHNIQUE
Spectral and angular properties of fast electrons
generated during the laser-plasma interactions
are retrieved studying bremsstrahlung g-ray
photons.
Bremsstrahlung of high energy electrons (gtMeV) is
confined in a cone of aperture (a1/g ). This
ensures that the electron angular distribution is
preserved.
The spectral properties of incident electrons can
be obtained by comparison of measured signals
with predictions of Montecarlo simulations (GEANT)
LOA-ENSTA
7INFERRED ELECTRON ENERGY
Total input laser energy sets the lower limit on
fast electron energy
Montecarlo simulations of our exact experimental
conditions compared with esperimental results
identify possible electron number vs.electron
energy curves
Assuming a conversion efficiency into fast
electrons of 10-2, Montecarlo simulations require
a minimum electron energy of 30 MeV to explain
observed g-ray signals.
LOA-ENSTA
8ANGULAR DISTRIBUTION OF g-RAYS
Angular distribution of g-rays is peaked along
the CPA direction.
Fitting curve
qFWHM 42.5 0.5
Angular distribution of g-rays sets a higher
limit to electron angural spread. Detailed
electron energy distribution is needed to infer
the actual angular distribution via bremstrahlung.
D. Giulietti, M. Galimberti, A. Giulietti, L. A.
Gizzi, F. Balcou, A. Rousse, J. Ph. Rousseau,
M.Borghesi, High-energy electron beam production
by femtosecond laser interactions with
exploding-foil plasmas, Phys. Rev. E 64, 015402
(R) (2001).
LOA-ENSTA
9DIRECT MEASUREMENTS
Direct measurements of electron energy and
angular distribution have been made using
radiochromic film detector
LOA-ENSTA
10ELECTRON ANGULAR DISTRIBUTION
Only higher energy electrons propagates through
all layers. Multiple scattering causes angular
spreading of the electron beam.
I
26 mm from the plasma
D. Giulietti, M. Galimberti, A. Giulietti, L. A.
Gizzi, R. Numico and P. Tomassini,M. Borghesi,V.
Malka and S. Fritzler, M. Pittman and K. Taphouc,
Production of ultra-collimated bunches of
multi-MeV electrons by 35-fs laser pulses
propagating in exploding-foil plasmas, to be
published as a letter on Physics of Plasmas
(2002).
LOA-ENSTA
11PIC SIMULATIONS
Electron angular distribution predicted by 3D
particle - in - cell simulations
The pattern produced by the electrons accelerated
forwardis simulated in the conditions of our
experiment Very similar results have been
obtained by A. Pukhov using a different PIC cod
Energy 10 MeV
Netot 3.109
Energy 200 keV
- Involvement of young res. R. Numico
- Simulation work (code by H. Ruhl)
- Summer school on parallel processing
R. Numico, M. Galimberti, A. Giulietti, D.
Giulietti, L.A.Gizzi, Influence of the transverse
ponderomotive forces on the electron acceleration
dynamics, preprint (2002).
12II-EXPERIMENTS AT ILIL
XPOSE Mid-term review meeting
X-ray spectroscopy of highly charged ions
13DEDICATED TARGET CHAMBER
A new target chamber has been set up specifically
for X-ray spectroscopic studies of laser-plasmas
- Detailed spectroscopy using
- Space resolved 1D (slit) spectrometer
- Space resolved 2D (Curved crystal)
- Time resolved (streak-camera)
- High dynamic range (cooled) CCD
14X-RAY SOURCE CHARACTERISATION
The plasma is produced by a 3ns NdYAG laser
pulse focused on a cylindrical target at an
intensity of 1014 W/cm2
15PUSHING TOWARDS HIGHER ENERGY
Hydrogen-like Helium-like Element 2p1/2 2p3/2 2p
3P1 2p 1P1 (eV) 13 Al 1727.7 1729.0 1588.3 1598.4
14 Si 2004.3 2006.1 1853.9 1865.1 15
P 2301.7 2304.0 2140.3 2152.6 16
S 2619.7 2622.7 2447.3 2460.8 17
Cl 2958.5 2962.4 2775.1 2789.8 18
Ar 3318 3323 3124 3140 19 K 3699 3705 3493 3511 20
Ca 4100 4108 3883 3903 21 Sc 4523 4532 4295 4316
22 Ti 4966 4977 4727 4750 23 V 5431 5444 5180 5205
24 Cr 5917 5932 5655 5682 25 Mn 6424 6442 6151 61
81 26 Fe 6952 6973 6668 6701 27
Co 7502 7526 7206 7242 28 Ni 8073 8102 7766 7806 2
9 Cu 8666 8699 8347 8392 30 Zn 9281 9318 8950 8999
31 Ga 9917 9960 9575 9628
Possibility of higher energy emission (required
for time-resolved diffraction studies) is being
explored using higher Z material as a target.
16K-SHELL EMISSION FROM SILICON
Si-XIII and Si-XIV spectrum from laser irradiated
target
17K-SHELL EMISSION FROM Cl
Cl-XVI spectrum from laser irradiated CaCl2 target
18K-SHELL EMISSION FROM Ca AND Ti
He-alpha emission from increasing Z targets - up
to titanium can be obtained in our experimental
conditions
Ca
Ti
19NUMERICAL MODELLING OF PLASMA
Simulations (collisional-radiative modelling -
RATION1)
Experimental data
Hydrodynamic simulations (MEDUSA2 1D,
POLLUX3 2D)
1 Lee et al., J. Quant. Spectrosc. Radiat.
Transfer 32, 91 (1984) 2 Christiansen et al.,
Comput.Phys.Commun. 7, 271 (1974) Rodgers et
al., RAL Report n. RAL-89-127, 1989 3 Pert
G.J., J. Comput. Phys. 43, 111 (1981)
20X-RAY SOURCE SPATIAL PROPERTIES
Spectro-microscopy using a narrow slit
Space resolved spectrum with spherically bent
focusing quarz crystal (bottom)
21TIME-RESOLVED SPECTROSCOPY
An X-ray streak-camera equipped with a crystal
spectrometer is used to perform temporal analysis
of K-shell emission from plasma
1 ns
1 ns
Alluminio
Alluminio
1 ns
1 ns
Silicio
Silicio
22X-RAY MONOCROMATOR FOR CCD CALIBRATION
Bragg diffraction from a crystal is used to
select narrow band soft X-ray radiation for CCD
detector calibration
Calibrazione del sensore nella regione 1-2 keV
L.Labate et al., preprint available
23RELEVANT PUBLICATIONS(joint and/or with young
researcher)
- R. Numico, M. Galimberti, A. Giulietti, D.
Giulietti, L.A.Gizzi, Influence of the transverse
ponderomotive forces on the electron acceleration
dynamics, preprint (2002). - L. Labate, A. Bagamery, M. Galimberti, A.
Giulietti, D. Giulietti, L.A.Gizzi, A
laser-plasma source for calibration of CCDs in
the soft X-ray range, to be submitted to Nuc.
Instr. Meth. A, (2002). - R. Numico, E. Conejero Jarque, M. Galimberti, A.
Giulietti, D. Giulietti, L.A.Gizzi,Influence of
the periodic increase at the surface ov an
overdense plasma on the harmonic generation
process, submitted EJPD (2002). - D. Giulietti, M. Galimberti, A. Giulietti, L. A.
Gizzi, R. Numico and P. Tomassini,M. Borghesi,V.
Malka and S. Fritzler, M. Pittman and K. Taphouc,
Production of ultra-collimated bunches of
multi-MeV electrons by 35-fs laser pulses
propagating in exploding-foil plasmas, to be
published as a letter on Physics of Plasmas
(2002). - M. Galimberti, A. Giulietti, D. Giulietti, L.A.
Gizzi, Ph. Balcou , A. Rousse, J.Ph. Rousseau,
Investigation of femtosecond laser-plasma
interactions through w and 2w imaging and
spectroscopy, Laser and Part. Beams 19, 47
(2001). (joint) - D. Giulietti, M. Galimberti, A. Giulietti, L. A.
Gizzi, F. Balcou, A. Rousse, J. Ph. Rousseau,
M.Borghesi, High-energy electron beam production
by femtosecond laser interactions with
exploding-foil plasmas, Phys. Rev. E 64, 015402
(R) (2001). (joint) - L. Labate, M. Galimberti, A.Giulietti, D
Giulietti, L.A. Gizzi, R. Numico, A. Salvetti,
Line spectroscopy with spatial resolution of
laser-plasma X-ray emission, Laser and Part.
Beams 19, 117 (2001).