Title: Review of Bayesian Methods
1Review of Bayesian Methods
2Looking back
- Course description
- Illustrates fundamentals and current approaches
to Bayesian modeling and computation. Describes
Bayesian approach to simple models, such as
normal and binomial distributions. Introduce
concepts such as conjugate and noninformative
prior distributions. Use real data examples to
illustrate tools including hierarchical models
(random effect models), hypothesis testing, model
averaging, linear regression, generalized linear
models. Discusses modern Bayesian computationÂ
the implementation and monitoring of Markov chain
Monte Carlo methods (Gibbs' sampler and
Metropolis Hastings algorithm).
3Looking back
- Course learning objective
- Upon successfully completing this course,
students will be able to - 1) develop an understanding and appreciation of
the Bayesian approach - 2) specify models and choose priors to adequately
address a problem - 3) make posterior inference both algebraically
and computationally.
4Outline
- Fundamentals know what you are doing
- Single parameter model example Beta-binomial,
Normal with known var, Normal with known mean - Multi-parameter model inference strategy,
example Normal model with unknown mean unknown
variance
5Fundamentals
6Bayesian statistics
- The quantification of uncertainty de Finetti
- Can be equated with personal belief
- the exploration of a parameter ? in light of
data X --Dennis Lindley
7- Goal draw conclusion/inference for ?
- Data is given (fixed in operational sense)
- Parameter has uncertainty (random)
8Bayesian Machinery
- data
- prior belief ------------? posterior belief
- likelihood
- prior distribution ------------? posterior
- L(?)P(X?)
- p(?) --------------------? p(?X)
9Bayesian Machinery
10Marginalization
- Multi-parameter ?2 is nuisance parameter
- Hierarchical ?2 is hyperparameter
11Hypothesis Testing
- Theories H1, H2, or more
- Assign prior probabilities to each
- Bayes factor measures the evidence for or against
a theory
12Binomial Models
- Conjugate prior Multinomial
13Beta distribution
- A convenient distribution to use for probability
- Beta(a, ß)
- mean a/(aß)
- var mean(1-mean)/(1aß)
14Binomial with conjugate prior
- ? beta(a,ß)
- data y1,n1-y1
- ?y1 beta(ay1,ßn1-y1)
- data y2,n2-y2
- ?y1,y2 beta(ay1y2, ßn1n2-y1-y2)
-
- Informative conjugate priors has a pseudo-data
interpretation
15Multinomial with conjugate prior
- ? Dirichlet(a1,a2,a3,)
- data y11,y12,y13,
- ?y1.Dirichlet(a1y11,a2y12,a3y13,)
- data y21,y22,y23,
- ?y1.,y2.Dirichlet(a1y11y21, a2y12y22,
- a3y13y23, )
- Informative conjugate priors has a pseudo-data
interpretation
16Normal Models
17Normal model with known variance
- Parameter of interest Normal mean ?
- Normal prior N(µ0,t02), flat when t028
- Normal posterior
18Informative Prior for ?
19Noninformative Prior for ?
sample mean, standard error
20Normal variance with known mean
- Parameter of interest Normal variance s2
- Inverse-Gamma prior invGamma(a, ß),
- non-informative improper prior when a0, ß0 ?
(s2) -1 - Inverse-Gamma posterior
- s2y invGamma(an/2, ß
)
21Informative Prior for s2
- fGamma(a,ß) p(f)? ?a-1e-ß?
- Let s21/f, then s2invGamma(a,ß)
- p(s2)? (s2) -(a1)e-ß/s2
pseudo data interpretation of a ß
22Noninformative prior for s2
23Normal both mean variance unknown
24Joint, Marginal, Conditional Posterior
- P(?1y)?p(?1,?2y)d?2
- P(?2y)?p(?1,?2y)d?1
- P(?1,?2y)p(?1?2,y)p(?2y)
- p(?2?1,y)p(?1y)
25Strategy for Multi-Parameter Inference
- Specify a joint prior p(?1, ?2)
- Write down likelihood
- L(?1, ?2)P(y?1, ?2)
- Derive the joint posterior
- P(?1, ?2 y)? p(?1, ?2) p(y?1, ?2)
- Then make joint or marginal inference
26Strategy for Multi-Parameter Inference for Normal
Data
- Joint prior
- p(µ, s2) p(µs2)p(s2)
- Normal-InvGamma. or Uniform x 1/s2
- Likelihood
- L(µ, s2)P(yµ, s2)
- Joint posterior
- P(µ, s2 y)? p(µ, s2) p(yµ, s2)
- Marginal posterior
- P(µy)?p(µ, s2y)ds2 is a student-t
(trick change of variable) - P(s2y)?p(µ, s2y)dµ is an inv-Gamma
27Ordinary Linear Regression
- A multi-variate case of Normal model.
- Likelihood
28Non-informative Joint Prior
29Joint Posterior
30Marginal, Conditional Posterior
Marginal for s2
Conditional for ß
Marginal for ß
31Hierarchical Model
32Rat tumor
hyper-prior
- Rat tumor experiments, j1,2,,71
hyper-parameters
super-population prior
parameters
likelihood
33Meta-analysis of beta-blocker
hyper-prior
- Beta-blocker trials, j1,2,,22
?0, t
hyper-parameters
super-population prior
?22
parameters
likelihood
y22
34Strategy for Hierarchical Model
- Same as multi-parameter model
- Joint prior ? Joint posterior
- Joint posterior ? Marginal posterior
hyper-prior
super-popn
35The school example
p(µ,t)? 1
µ overall trtmt effect t heterogeneity among
schools
? j N( µ, t )
? j effect at school j
yj N( ?j , sj2), sj2 known
36Empirical Bayes is not hierarchical
µµ,t t
µµ,tt
µ overall trtmt effect t heterogeneity among
schools
?2
?3
?8
?1
? j N( µ, t )
? j effect at school j
y2
y3
y8
y1
yj N( ?j , sj2), sj2 known
µargmaxµp(µy)
37Hierarchical Linear Modelwang
likelihood
super-popn
hyperprior
38Noninformative Priors
39(No Transcript)
40Parameter Transformations