Title: NonEquilibrium Dynamics and Decoherence of Quantum Spin Chains
1Non-Equilibrium Dynamics and Decoherence of
Quantum Spin Chains
- Robert Cherng
- Harvard University
- Leonid Levitov (MIT)
- MIT UROP
- NDSEG
2Why quantum spin chains?
- Dynamics across quantum critical points
- BEC in optical lattices Greiner et al., Nature
(2002) - Fundamental issues
- Intrinsic dynamics, quantum criticality,
decoherence - Quantum spin chains
- Equilibrium properties well-known, microscopic
approach, exact solutions
3Outline
- Solution of dynamic transverse XY model
- Jordan-Wigner fermionization, Landau-Zener
tunneling - Many-body decoherence
- Non-equilibrium steady state, mapping to
equilibrium model at finite temperature - Spin correlators
- Crossover behavior, conjecture on Toeplitz
determinant
4Dynamic transverse XY model
Barouch and McCoy (PRA 3, 1971)
5Jordan-Wigner fermionization
- Transform hard-core bosons to fermions
- Fermionic Hamiltonian is quadratic
6Landau-Zener tunneling I.
Convenient Basis
Landau (Phys. Z, 1932) Zener (Proc. R. Soc. 1932)
7Landau-Zener tunneling II.
Brundobler (J. Phys. A 1993)
8Many-body decoherence
- Local observables are physically relevant
- Remove cutoffs in a physical way (n?? last)
- Does decoherence remain?
9Non-equilibrium steady state I.
- Evolve far past ground state into far future
- Decoherence appears at late times
10Non-equilibrium steady state II.
- Even/odd sublattices decouple dynamically
- Effective mixed state on each sublattice
- Dimensionless dispersion
11Effective dispersion
z/z100
- Full gap for zltz
- Gapless for zgtz
- Low-lying excitations for z?z
10
1
0.01
0.1
12Mapping to isotropic XY model
- Low-lying excitation structure ? thermal
isotropic XY (XX) - Compare dispersions
Barouch and McCoy (PRA 3, 1971)
13Spin Correlators I.
- Full lattice and sublattice spin correlators
- Full lattice correlators factorize
14Spin Correlators II.
- Consider sublattice only and rewrite in terms of
fermionic correlators - Only one non-trivial fermionic correlator
Lieb et el (Ann. Phys. 1961)
15Transverse Correlators
- Magnetization is smooth
- gzn decays as n-2n
16Toeplitz Determinants
- Need asymptotics of large Toeplitz determinants
for longitudinal correlators - Notation and generating functions
- Limitations of known results Szëgo lemma,
Fisher-Hartwig conjecture
Böttcher et. al., Analysis of Toeplitz Operators
17New Conjecture I.
- Representations of f(?) not unique Basor and
Tracy (Phys. A 1991) - Parameters related by
18New Conjecture II.
- Dont constrain ?p1 admits much larger class
of generating functions - Sum over all reps., drop subleading terms
19Longitudinal correlators I.
- Roots of the generating function
- Large n asymptotic expansion
20Longitudinal correlators II.
A
??, ?? ?x,y? ?x,y0
?-1
21Small zz
A
- Low temperature, large effective field
- Some results on ?-1
?-1
22Crossover z?z
A
- g? analytic in z
- Near critical field
??, ??
?-1
23Large zz
A
- Linearized dispersions
- Low temperature, effective field near -1
- Some results on ?-1
?-1
24Full lattice correlators
- Recall relation between correlators
- ?x,y correlators on full lattice sensitive to
crossover for ? correlators on sublattice
25Conclusion
- Exact dynamics of transverse XY model
- Landau-Zener tunneling and critical modes
- Intrinsic many-body decoherence
- Emergence of mixed density matrix for local
observables at late times, description as thermal
XX model - Asymptotics of spin correlators
- New conjecture on Toeplitz determinant,
non-trivial crossover behavior