NonEquilibrium Dynamics and Decoherence of Quantum Spin Chains - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

NonEquilibrium Dynamics and Decoherence of Quantum Spin Chains

Description:

Non-Equilibrium Dynamics and Decoherence of Quantum Spin Chains. Robert Cherng ... Drive through two quantum critical points. Barouch and McCoy (PRA 3, 1971) ... – PowerPoint PPT presentation

Number of Views:77
Avg rating:3.0/5.0
Slides: 26
Provided by: bobch4
Category:

less

Transcript and Presenter's Notes

Title: NonEquilibrium Dynamics and Decoherence of Quantum Spin Chains


1
Non-Equilibrium Dynamics and Decoherence of
Quantum Spin Chains
  • Robert Cherng
  • Harvard University
  • Leonid Levitov (MIT)
  • MIT UROP
  • NDSEG

2
Why quantum spin chains?
  • Dynamics across quantum critical points
  • BEC in optical lattices Greiner et al., Nature
    (2002)
  • Fundamental issues
  • Intrinsic dynamics, quantum criticality,
    decoherence
  • Quantum spin chains
  • Equilibrium properties well-known, microscopic
    approach, exact solutions

3
Outline
  • Solution of dynamic transverse XY model
  • Jordan-Wigner fermionization, Landau-Zener
    tunneling
  • Many-body decoherence
  • Non-equilibrium steady state, mapping to
    equilibrium model at finite temperature
  • Spin correlators
  • Crossover behavior, conjecture on Toeplitz
    determinant

4
Dynamic transverse XY model
Barouch and McCoy (PRA 3, 1971)
5
Jordan-Wigner fermionization
  • Transform hard-core bosons to fermions
  • Fermionic Hamiltonian is quadratic

6
Landau-Zener tunneling I.
Convenient Basis
Landau (Phys. Z, 1932) Zener (Proc. R. Soc. 1932)
7
Landau-Zener tunneling II.
Brundobler (J. Phys. A 1993)
8
Many-body decoherence
  • Local observables are physically relevant
  • Remove cutoffs in a physical way (n?? last)
  • Does decoherence remain?

9
Non-equilibrium steady state I.
  • Evolve far past ground state into far future
  • Decoherence appears at late times

10
Non-equilibrium steady state II.
  • Even/odd sublattices decouple dynamically
  • Effective mixed state on each sublattice
  • Dimensionless dispersion

11
Effective dispersion
z/z100
  • Full gap for zltz
  • Gapless for zgtz
  • Low-lying excitations for z?z

10
1
0.01
0.1
12
Mapping to isotropic XY model
  • Low-lying excitation structure ? thermal
    isotropic XY (XX)
  • Compare dispersions

Barouch and McCoy (PRA 3, 1971)
13
Spin Correlators I.
  • Full lattice and sublattice spin correlators
  • Full lattice correlators factorize

14
Spin Correlators II.
  • Consider sublattice only and rewrite in terms of
    fermionic correlators
  • Only one non-trivial fermionic correlator

Lieb et el (Ann. Phys. 1961)
15
Transverse Correlators
  • Magnetization is smooth
  • gzn decays as n-2n

16
Toeplitz Determinants
  • Need asymptotics of large Toeplitz determinants
    for longitudinal correlators
  • Notation and generating functions
  • Limitations of known results Szëgo lemma,
    Fisher-Hartwig conjecture

Böttcher et. al., Analysis of Toeplitz Operators
17
New Conjecture I.
  • Representations of f(?) not unique Basor and
    Tracy (Phys. A 1991)
  • Parameters related by

18
New Conjecture II.
  • Dont constrain ?p1 admits much larger class
    of generating functions
  • Sum over all reps., drop subleading terms

19
Longitudinal correlators I.
  • Roots of the generating function
  • Large n asymptotic expansion

20
Longitudinal correlators II.
A
  • Write in canonical form

??, ?? ?x,y? ?x,y0
?-1
21
Small zz
A
  • Low temperature, large effective field
  • Some results on ?-1

?-1
22
Crossover z?z
A
  • g? analytic in z
  • Near critical field

??, ??
?-1
23
Large zz
A
  • Linearized dispersions
  • Low temperature, effective field near -1
  • Some results on ?-1

?-1
24
Full lattice correlators
  • Recall relation between correlators
  • ?x,y correlators on full lattice sensitive to
    crossover for ? correlators on sublattice

25
Conclusion
  • Exact dynamics of transverse XY model
  • Landau-Zener tunneling and critical modes
  • Intrinsic many-body decoherence
  • Emergence of mixed density matrix for local
    observables at late times, description as thermal
    XX model
  • Asymptotics of spin correlators
  • New conjecture on Toeplitz determinant,
    non-trivial crossover behavior
Write a Comment
User Comments (0)
About PowerShow.com