Pathway Modeling and Problem Solving Environments - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Pathway Modeling and Problem Solving Environments

Description:

Search literature (databases), Lab notebooks. Define/modify models. A user ... Collect data on paper lab notebooks. Convert to differential equations by hand ... – PowerPoint PPT presentation

Number of Views:64
Avg rating:3.0/5.0
Slides: 26
Provided by: cliffs5
Category:

less

Transcript and Presenter's Notes

Title: Pathway Modeling and Problem Solving Environments


1
Pathway Modeling andProblem Solving Environments
  • Cliff Shaffer
  • Department of Computer Science
  • Virginia Tech
  • Blacksburg, VA 24061

2
The Fundamental Goal of Molecular Cell Biology
3
ApplicationCell Cycle Modeling
  • How do cells convert genes into behavior?
  • Create proteins from genes
  • Protein interactions
  • Protein effects on the cell
  • Our study organism is the cell cycle of the
    budding yeast Saccharomyces cerevisiae.

4
G1
cell division
S
DNA replication
M (mitosis)
G2
5
Mcm1
Cdh1
Cdc20
Cln2 Clb2 Clb5
Mitosis
Mad2
growth
APC-P

unaligned chromosomes

Mcm1
Cdc20
Cdh1
Clb2
APC
Inactive trimer
Cdc14
and
Cln3
Swi5
CDKs
SCF
P
Cdc14
Bck2
Inactive trimer
?
MBF
Clb5
DNA synthesis
Clb2
SBF
Cln2
Budding
6
Modeling Techniques
  • One method Use ODEs that describe the rate at
    which each protein concentration changes
  • Protein A degrades protein B
  • with initial condition A(0) A0.
  • Parameter c determines the rate of
    degradation.
  • Sometimes modelers use creative rate laws to
    approximate subsystems

7
Mathematical Model
8
Simulation of the budding yeast cell cycle
mass
CKI
Cln2
Clb2
Cdh1
Cdc20
Time (min)
9
(No Transcript)
10
Experimental Data
11
Tysons Budding Yeast Model
  • Tysons model contains over 30 ODEs, some
    nonlinear.
  • Events can cause concentrations to be reset.
  • About 140 rate constant parameters
  • Most are unavailable from experiment and must set
    by the modeler

12
Fundamental Activities
  • Collect information
  • Search literature (databases), Lab notebooks
  • Define/modify models
  • A user interface problem
  • Run simulations
  • Equation solvers (ODEs, PDEs, deterministic,
    stochastic)
  • Compare simulation results to experimental data
  • Analysis

13
Modeling Lifecycle
14
Our Mission Build Software to Help the Modelers
  • Typical cycle time for changing the model used to
    be one month
  • Collect data on paper lab notebooks
  • Convert to differential equations by hand
  • Calibrate the model by trial and error
  • Inadequate analysis tools
  • Goal Change the model once per day.
  • Bottleneck should shift to the experimentalists

15
Another View
  • Current models of simple organisms contain a few
    10s of equations.
  • To model mammalian systems might require two
    orders of magnitude in additional complexity.
  • We hope our current vision for tools can supply
    one order of magnitude.
  • The other order of magnitude is an open problem.

16
JigCell
  • Current Primary Software Components
  • JigCell Model Builder
  • JigCell Run Manager
  • JigCell Comparator
  • Automated Parameter Estimation (PET)
  • Bifurcation Analysis (Oscill8)
  • http//jigcell.biol.vt.edu

17
Model Builder
Parameter Values
Run Manager
Comparator
Parameter Optimizer
18
JigCell Model Builder
  • From a wiring diagram

19
JigCell Model Builder
  • to a reaction mechanism

N.B. Parameters are given names, not numerical
values!
to ordinary differential equations
(ode files, SBML)
20
Mutations
  • Wild type cell
  • Mutations
  • Typically caused by gene knockout
  • Consider a mutant with no B to degrade A.
  • Set c 0
  • We have about 130 mutations
  • each requires a separate simulation run

21
Run Manager
  • Inheritance patterns

22
JigCell Run Manager
23
Phenotypes
  • Each mutant has some observed outcome
    (experimental data). Generally qualitative.
  • Cell lived
  • Cell died in G1 phase
  • Model should match the experimental data.
  • Model should not be overly sensitive to the rate
    constants.
  • Overly sensitive biological systems tend not to
    survive

24
Comparator
  • Visualize results

Kumagai1
Kumagai2
25
Comparator
Write a Comment
User Comments (0)
About PowerShow.com