Inference Rules with Quantifiers - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Inference Rules with Quantifiers

Description:

Inferences: horse(Charlie) ? 6. Inference Rules with Quantifiers ... Inference: horse(Charlie) 7. Generalized Modus Ponens. p1', p2', ..., pn', (p1, p2, ..., pn q) ... – PowerPoint PPT presentation

Number of Views:218
Avg rating:3.0/5.0
Slides: 34
Provided by: TruHoa3
Category:

less

Transcript and Presenter's Notes

Title: Inference Rules with Quantifiers


1
Inference Rules with Quantifiers
  • Substitution
  • SUBST(?, ?) ??
  • ? ? x1/t1, x2/t2, , xn/tn
  • SUBST(x/John, y/mother(x), love(x, y))
    love(John, mother(John))

2
Inference Rules with Quantifiers
  • Universal instantiation
  • ?x a
  • ?????????????
  • SUBST(x/ground-term, ?)
  • ?x king(x) ? greedy(x) ? evil(x)
  • ???????????????????
  • king(John) ? greedy(John) ? evil(John)

3
Inference Rules with Quantifiers
  • Existential instantiation
  • ?x a
  • ??????????????
  • SUBST(x/new-constant, ?)
  • ?x crown(x) ? on-head(x, John)
  • ??????????????
  • crown(c) ? on-head(c, John)

4
Inference Rules with Quantifiers
  • Reduction to propositional inference
  • ?x king(x) ? greedy(x) ? evil(x)
  • king(John)
  • greedy(John)
  • king(John) ? greedy(John) ? evil(John)

5
Inference Rules with Quantifiers
  • An offspring of a horse is a horse
  • ?
  • Bluebeard is a horse
  • ?
  • Charlie is Bluebeards offspring
  • ?
  • Inferences horse(Charlie) ?

6
Inference Rules with Quantifiers
  • An offspring of a horse is a horse
  • ?x, y horse(x) ? offspring(x, y) ? horse(y)
  • Bluebeard is a horse
  • horse(Bluebeard)
  • Charlie is Bluebeards offspring
  • offspring(Bluebeard, Charlie)
  • Inference horse(Charlie)

7
Generalized Modus Ponens
  • p1, p2, , pn, (p1, p2, , pn ? q)
  • ????????????????
  • SUBST(?, q)
  • pi and pi are atomic
  • SUBST(?, pi) SUBST(?, pi)

8
Generalized Modus Ponens
  • Unification
  • UNIFY(p, q) unifier ? where SUBST(?, p)
    SUBST(?, q)
  • knows(John, x) ? hates(John, x)
  • knows(John, Jane)
  • knows(y, Leonid)
  • knows(y, mother(Y))
  • knows(y, Elizabeth)
  • UNIFY(knows(John, x), knows(John, Jane))
    x/Jane
  • UNIFY(knows(John, x), knows(y, Leonid))
    x/Leonid, y/John
  • UNIFY(knows(John, x), knows(y, mother(y)))
    y/John, x/mother(John)
  • UNIFY(knows(John, x), knows(x, Elizabeth)) fail

9
Generalized Modus Ponens
  • Standardization
  • UNIFY(knows(John, x1), knows(x2, Elizabeth))
    x1/John, x2/Elizabeth
  • Most generalized unifier
  • UNIFY(knows(John, x), knows(y, z))
  • y/John, x/John, z/John
  • y/John, x/Jane, z/Jane
  • y/John, x/v, z/v
  • y/John, x/z, v/Jane
  • y/John, x/z

10
Forward Chaining
  • An offspring of a horse is a horse
  • ?
  • Bluebeard is a horse
  • ?
  • Bluebeard is Charlies parent
  • ?
  • Offspring and parent are inverse relations
  • ?

11
Forward Chaining
  • An offspring of a horse is a horse
  • ?x,y horse(x) ? offspring(x, y) ? horse(y)
  • Bluebeard is a horse
  • horse(Bluebeard)
  • Bluebeard is Charlies parent
  • parent(Charlie, Bluebeard)
  • Offspring and parent are inverse relations
  • ?x,y offspring(x, y) ? parent(y, x)

12
Backward Chaining
?x,y horse(x) ? offspring(x, y) ?
horse(y) horse(Bluebeard) parent(Charlie,
Bluebeard)
horse(z)
horse(z)
z/Bluebeard
horse(Bluebeard)
offspring(Bluebeard, z)
parent(z, Bluebeard)
z/Charlie
13
Soundness and Completeness
  • Soundness
  • if KB derives a then KB a

14
Soundness and Completeness
  • Modus Ponens is sound
  • ?x p(x) ? q(x)
  • ?x ?p(x) ? r(x)
  • ?x q(x) ? s(x)
  • ?x r(x) ? s(x)
  • q(c)
  • KB derives q(c) and KB s(c)

15
Soundness and Completeness
  • Completeness
  • if KB a then KB derives a

16
Soundness and Completeness
  • Modus Ponens is not complete
  • ?x p(x) ? q(x)
  • ?x ?p(x) ? r(x)
  • ?x q(x) ? s(x)
  • ?x r(x) ? s(x)
  • q(c)
  • KB derives s(a) but KB ? s(a)

17
Generalized Resolution
  • p1 ? pj ? pm
  • q1 ? qk ? qn
  • ????????????????????????????
  • resolvent
  • SUBST(?, p1 ? pj-1 ? pj1 ? pm ? q1 ? qk-1
    ? qk1 ? qn)
  • UNIFY(pj , ?qk) ? for literals pi and qi

18
Generalized Resolution
  • Conjunctive normal form
  • ?x p(x) ? q(x)
  • ?x ?p(x) ? r(x)
  • ?x q(x) ? s(x)
  • ?x r(x) ? s(x)
  • ?p(x) ? q(x)
  • p(y) ? r(y)
  • ?q(z) ? s(z)
  • ?r(t) ? s(t)

19
Generalized Resolution
  • Refutation proof procedure
  • KB a if and only if KB ? ?a false

20
Generalized Resolution
?p(x) ? q(x)
?q(z) ? s(z)
?p(z) ? s(z)
p(y) ? r(y)
?p(x) ? q(x) p(y) ? r(y) ?q(z) ? s(z) ?r(t) ? s(t)
s(y) ? r(r)
?r(t) ? s(t)
s(t)
?s(a)
sound and complete
21
Generalized Resolution
  • Conversion to CNF
  • Eliminate implications
  • p ? q ? ?p ? q
  • Move ? inwards
  • ?(p ? q) ? ?p ? ?q
  • ?(p ? q) ? ?p ? ?q
  • ??x p ? ?x ?p
  • ??x p ? ?x ?p
  • ?? p ? p
  • Standardize variables
  • (?x p(x)) ? (?x p(x)) ? (?x p(x)) ? (?y q(y))

22
Generalized Resolution
  • Conversion to CNF (cont.)
  • Move quantifiers left
  • p ? q ? ?X p ? q
  • Skolemize (to remove ?)
  • ?x p(x) ? p(c) Skolem constant
  • ?x ?y p(x, y) ? ?x p(x, f(x)) Skolem function
  • Distribute ? over ?
  • (p ? q) ? r ? (p ? r) ? (q ? r)
  • Flatten nested conjunctions and disjunctions
  • (p ? q) ? r ? (p ? q ? r)
  • (p ? q) ? r ? (p ? q ? r)

23
Generalized Resolution
  • Jack owns a dog
  • ?
  • Every dog owner is an animal lover
  • ?
  • No animal lover kills an animal
  • ?
  • Either Jack or Fred killed cat Kiko
  • ?

24
Generalized Resolution
  • Jack owns a dog
  • ?x dog(x) ? own(Jack, x)
  • Every dog owner is an animal lover
  • ?x (?y dog(y) ? own(x, y)) ? animal-loverx)
  • No animal lover kills an animal
  • ?x animal-lover(x) ? ?y animal(y) ? ?kill(x, y)
  • Either Jack or Fred killed cat Kiko
  • kill(Jack, Tuna) ? kill(Fred, Kiko)

25
Generalized Resolution
  • dog(c)
  • owns(Jack, c)
  • ?dog(y) ? ?own(x, y)) ? animal-lover(x)
  • ?animal-lover(x) ? ?animal(y) ? ?kill(x, y)
  • kill(Jack, Kiko) ? kill(Fred, Kiko)
  • cat(Kiko)
  • ?cat(x) ? animal(x)
  • ? kill(Fred, Kiko)

26
Logic Programming
  • Robinson, J.A. 1965. A machine-oriented logic
    based on the resolution principle. Journal of ACM
    12 (1) 23-41.
  • Kowalski, R.A. Kuehner, D. 1971. Linear
    Resolution with Selection Function. Artificial
    Intelligence 2 (3/4) 227-260.
  • Kowalski, R.A. 1979. Algorithm Logic Control.
    Communication of ACM 22 (7) 424-436.
  • Lloyd, J.W. 1987. Foundations of Logic
    Programming (2nd ed.).

27
Logic Programming
  • Definite logic program
  • A ? B1, B2, , Bm ? A ? ?B1 ? ?B2 ? ? ?Bm
    (program clause)
  • head body
  • ? A1, A2, , An ? ?A1 ? ?A2 ? ? ?An (goal
    clause)
  • A, Bi, Aj atoms

28
Logic Programming
  • PROLOG (Alain Colmerauer 1972) only Horn clauses
    (definite clauses) allowed

29
Logic Programming
  • The occur-check is omitted from the unification ?
    unsound
  • test ? p(x, x)
  • p(x, f(x))

30
Logic Programming
  • Backward chaining with depth-first search
    ? incomplete
  • p(x, y) ? q(x, y)
  • q(x, y) ? q(y, x)
  • p(x, x)

31
Logic Programming
  • Unsafe cut ? incomplete
  • A ? B, C ? A
  • B ? D, !, E
  • D ? ? B, C
  • ? D, !, E, C
  • ? !, E, C

32
Logic Programming
  • Negation as failure ? P if fails to prove P
  • (closed-world assumption)

33
Exercises
  • In Russell Norvigs AIMA (2nd ed.) Exercises
    of Chapter 9.
Write a Comment
User Comments (0)
About PowerShow.com