Title: Regression with a Binary Dependent Variable SW Chapter 11
1Regression with a Binary Dependent Variable (SW
Chapter 11)
2Example Mortgage denial and raceThe Boston Fed
HMDA data set
3The Linear Probability Model(SW Section 11.1)
4The linear probability model, ctd.
5The linear probability model, ctd.
6Example linear probability model, HMDA data
7Linear probability model HMDA data, ctd.
8Linear probability model HMDA data, ctd
9The linear probability model Summary
10Probit and Logit Regression(SW Section 11.2)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14Probit regression, ctd.
15STATA Example HMDA data
16STATA Example HMDA data, ctd.
17Probit regression with multiple regressors
18STATA Example HMDA data
19STATA Example, ctd. predicted probit
probabilities
20STATA Example, ctd.
21Logit Regression
22Logit regression, ctd.
23STATA Example HMDA data
24Predicted probabilities from estimated probit and
logit models usually are (as usual) very close in
this application.
25Example for class discussion
26(No Transcript)
27(No Transcript)
28Hezbollah militants example, ctd.
29Predicted change in probabilities
30Estimation and Inference in Probit (and Logit)
Models (SW Section 11.3)
31Probit estimation by nonlinear least squares
32Probit estimation by maximum likelihood
33Special case the probit MLE with no X
34(No Transcript)
35(No Transcript)
36(No Transcript)
37The MLE in the no-X case (Bernoulli
distribution), ctd.
38The MLE in the no-X case (Bernoulli
distribution), ctd
39The probit likelihood with one X
40The probit likelihood function
41The Probit MLE, ctd.
42The logit likelihood with one X
43Measures of fit for logit and probit
44Application to the Boston HMDA Data (SW Section
11.4)
45The HMDA Data Set
46The loan officers decision
47Regression specifications
48(No Transcript)
49(No Transcript)
50(No Transcript)
51Table 11.2, ctd.
52Table 11.2, ctd.
53Summary of Empirical Results
54Remaining threats to internal, external validity
55Summary(SW Section 11.5)