EL 402 - PowerPoint PPT Presentation

About This Presentation
Title:

EL 402

Description:

EL 402. Xavier Neyt. 24/1/01. EL 402. 2. Regulation. Why? Stabilize unstable systems ... F(p) = R(p) S(p) does not move the poles of S(p) ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 25
Provided by: SIC6
Category:
Tags: xavier

less

Transcript and Presenter's Notes

Title: EL 402


1
EL 402
Xavier Neyt
2
Regulation
  • Why?
  • Stabilize unstable systems
  • e.g. inverted pendulum
  • Modify the dynamic behaviour
  • e.g. car suspension, B747
  • Increase the drive precision
  • e.g. static error (lift)

3
Regulation
  • How?
  • Combine two systems
  • the actual system S(p)
  • the control system R(p)
  • Such that the new system has the desired
    behaviour
  • poles at a convenient position

4
Combination of systems
  • Serial combination
  • F(p) R(p) S(p)
  • does not move the poles of S(p)
  • ! Zeroes of R(p) should NOT cover unstable poles
    of S(p)

5
Combination of systems
  • Parallel combination
  • F(p) R(p) S(p)
  • does not move the poles of S(p)

R(p)
U(p)
Y(p)

S(p)
6
Combination of systems
  • Feedback combination
  • F(p) RS/( 1 RS)
  • poles of F zeros of 1RS

U(p)
Y(p)

R(p)
S(p)

-
7
Example
  • S(p) First order system
  • S(p) 1/( pT - 1)
  • pole in p 1/T ? unstable
  • R(p) Proportional (constant)
  • R(p) K
  • F(p) K/(pT -1 K)
  • pole in p (K-1)/T

8
Example
9
Example
10
Nyquist diagram
  • Plot of RS(p) in parametric form
  • x Re( RS(p) )
  • y Im( RS(p) )
  • for p ? Nyquist contour
  • Can be deduced from the Bode plot
  • in the simple cases...

11
Bode diagram
12
Nyquist diagram
13
Stability
  • Aim of the Nyquist theorem
  • determine the stability of the closed-loop system
  • knowing the stability of the open-loop system

14
Stability
  • How does it work?
  • Need to know the zeros of 1RS(p)
  • These zeros need to be located p lt 0
  • 1RS(p) has the same poles as RS(p)
  • P1RS PRS
  • Principle of the argument
  • T0 N - P
  • T-1 N1RS - P1RS N1RS - PRS PF - PRS

15
Stability
  • Nyquist theorem
  • T-1 PF - PRS
  • La boucle fermee sera stable ssi le contour de
    Nyquist enlace (ds le sens negatif) autant de
    fois le point (-1,0) que le systeme en boucle
    ouverte possede de poles instables
  • De gesloten lus zal stabiel zijn als en slechts
    als het aantal toeren (in negatieve zin) die de
    Nyquist kromme rond het punt (-1,0) doet gelijk
    is aan het aantal onstabiele polen van de open
    lus.

16
Example unstable 1st order sys.
17
Stability
  • Nyquist theorem
  • particular case the open-loop system is stable
  • PRS 0 ? T-1 0
  • If the open-loop system is stable, the
    closed-loop system will be stable iff the Nyquist
    curve does not go round the point (-1,0)

18
Example stable 4th order sys.
19
Robustness
  • Introduces the notion of stability margins
  • define some kind of distance between the point
    (-1,0) and the Nyquist curve.
  • Most often used distances
  • gain margin
  • phase margin

20
Robustness
  • Most often used distances
  • gain margin
  • Distance to the point having a phase -180º
  • Maximum gain allowed in R without compromising
    the system stability
  • maximum minimum gain
  • phase margin
  • Angle to the first point having unit gain (0dB
    gain)
  • How much phase rotation is R allowed to introduce
    without compromising the system stability
  • max phase lag max phase lead

21
Gain/Phase margins
Unit Gain circle
Phase margin
Gain margin
22
Gain/Phase margins
Unit Gain circle
Phase margin
Gain margin
23
Gain/Phase margins
-180
24
Drive Precision
Write a Comment
User Comments (0)
About PowerShow.com