Title: Luminescent Colloidal Silica
1Luminescent Colloidal Silica
- Tom Schmedake
- Department of Chemistry
- University of North Carolina at Charlotte
- Charlotte, NC 28223
2Colloidal Silica
3Stöber type Sphere Preparation
Typical Recipe (250 nm spheres) Ethanol solvent
(200 mL scale) 2.0 M H2O 1.0 M NH3 0.17 M
TEOS 8 hour stirring _at_ 250C Properties Nonporo
us 80nm 1000nm range of particle sizes
Monodispersed (down to 2 RSD)
Stober, Fink, and Bohn. J. Colloid Interface
Sci., 1968, 26, 62. Bogush G.H., et. al. J. of
Non-Crystalline Solids 1988, 104, 95.
4Sol-gel chemistry
Hydrolysis
Condensation
- Initial particles aggregate until they reach
colloidal stability - Particles then grow spherically to minimize free
surface energy - Particles stop growing when they again reach
colloidal stability
5Multi-layer growth and self-sharpening
1 Shell 650nm (20kx)
2 Shells 690nm (20kx)
Core 450nm (20kx)
- Self-sharpening growth leads to lower
polydispersity - Also allows fluorescence doping
6Making silica spheres luminescent
- Hydrophilic dyes can sometimes be incorporated
during growth - Covalent attachment via silylation chemistry
then addition of more shells - Dye incorporation usually prevents calcination
7Fluorescent core-shell silica particles
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
8Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
9Hydrodynamic radius Dye - 1 nm Core - 2
nm Core-shell 15 nm
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
10Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
11Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
12Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
13(No Transcript)
14Sensing with colloidal silica PEBBLES
- PEBBLES R. Kopelman (Univ. Mich.)
- sol-gel, ormosil, and polymer spheres filled
with analyte specific dye - can be used as intracellular nano-biosensors
Xu, H. , et.al., Anal. Chem. 2001, 73, 4124.
15Mesoporous colloidal silica as sensor substrate
- Spheres doped with Ru(bipy)32 through ion
exchange process - Ru(bipy)32 emits 615 nm
- Emission is quenched by O2
Quenching is fast and reversible
A. M. Jakob, R. Hudgins, M. El-Kouedi, T. A.
Schmedake Submitted, 2006.
16Applications of Luminescent Colloidal Silica
1. Fluorescence detection of a single E-coli
3. Photonic Crystals / Colloidal Crystals / Opals
X. J. Zhao, et. al., Proc. of the Nat. Acad. of
Sci., 2004, 101, 15027.
2. Blood flow monitoring
V. L. Colvin, Adv. Mat., 2001, 13, 389.
See review L. Wang, K. M. Wang, S. Santra, X. J.
Zhao, L. R. Hilliard, J. E. Smith, J. R. Wu and
W. H. Tan, Anal. Chem., 2006, 78, 646.
Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel,
R. K. Jain and M. G. Bawendi, Adv. Mat., 2004,
16, 2092.
17Immunoassays
L. Wang, et. al. , Anal. Chem., 2006, 78, 646.
18Immunoassays
L. Wang, et. al. , Anal. Chem., 2006, 78, 646.
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25J.N. Anker and R. Kopelman. "Magnetically
modulated optical nanoprobes," Appl. Phys. Lett.
82, 1102 (2003).
26Aminopropylsilica Sphere Preparation
Properties Same as SFB silica Aminopropyl groups
are spread throughout the silica network Positive
surface charge Modified SFB procedure Ethanol
solvent 3.0 M H2O 0.5 M NH3 0.17 M
TEOS Co-condensation of APTES Stir for 3 hours _at_
250C
Aminoproplytriethoxysilane (APTES)
27A. M. Jakob and T. A. Schmedake, Chem. Mater.,
2006, 18, 3173-3175.
28Tailored properties
29Luminescence
30Quantum Yield
Emission spectra of separate ethanol solutions
with the same absorbance Quantum yield was found
to be as high as 12 POPOP 2-2-(1,4-phenylene
)bis5-phenyloxazole
31Long-lifetime Photoluminescence
- Spheres calcined over 500oC exhibit long lifetime
photoluminescence visible for more than 10
seconds at room temperature. -
- The long lifetime photoluminescence decay was
modeled using multi-exponential decay function
combining a simple decay term and a stretched
exponential decay term.
Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
32The stretching parameter
- The ß parameter can result from dispersive
transport of the photoexcited electrons and/or
holes in the solid due to either - Multiple trapping and detrapping carriers
- Hopping or tunnelling carriers
Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007 91, 1-3
33Temperature dependence studies
- The ß parameter is temperature independent over
the entire temperature range studied which is
indicative of a hopping mechanism - The simple exponential decay term appears to be
temperature independent at least until 400K
Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
34Temperature dependence studies cont
- For single exponential decay, average lifetime
(t) is - t 1/k
- For stretched exponential decay, k is time
dependent, average lifetime lttsgt is
35Temperature dependence studies cont
- The stretched exponential component is more
susceptible to competing pathways
Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
36Potential Applications- Imaging/Bioassays
- Advantages of dye-doped silica particles over
traditional fluorophores - Magnified signal for increased sensitivity
- Easy conjugation to biomolecules
- Increased photostability
- Decreased sensitivity to environment
- Advantages of luminescent silica particles
fabricated with APTES compared to other dye-doped
particles - stable at very high temperatures
- Long lifetimes allows gating of short lifetime
interferences - Low probable cytotoxicity
37Acknowledgements
Robert Hudgins Adam Jakob Essoyodou
Kpatcha Jasmine Gregory Ronald Sorianno
Funding UNC-Charlotte Junior Faculty Research
Grants Research Corporation Cottrell College
Award DARPA / ARL
38Radiative Processes in Dielectric Spheres
The rates of radiative processes can be
controlled by altering the electromagnetic vacuum
field to which the oscillating dipole is coupled
(e.g. via a dielectric boundary).
2 mm
H. Schniepp and V. Sandoghdar, Phys. Rev.Lett.
25, 257403-1 (2002).