Luminescent Colloidal Silica - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Luminescent Colloidal Silica

Description:

Luminescent Colloidal Silica – PowerPoint PPT presentation

Number of Views:443
Avg rating:3.0/5.0
Slides: 39
Provided by: thomassc7
Category:

less

Transcript and Presenter's Notes

Title: Luminescent Colloidal Silica


1
Luminescent Colloidal Silica
  • Tom Schmedake
  • Department of Chemistry
  • University of North Carolina at Charlotte
  • Charlotte, NC 28223

2
Colloidal Silica
3
Stöber type Sphere Preparation

Typical Recipe (250 nm spheres) Ethanol solvent
(200 mL scale) 2.0 M H2O 1.0 M NH3 0.17 M
TEOS 8 hour stirring _at_ 250C Properties Nonporo
us 80nm 1000nm range of particle sizes
Monodispersed (down to 2 RSD)
Stober, Fink, and Bohn. J. Colloid Interface
Sci., 1968, 26, 62. Bogush G.H., et. al. J. of
Non-Crystalline Solids 1988, 104, 95.
4
Sol-gel chemistry
Hydrolysis
Condensation
  • Initial particles aggregate until they reach
    colloidal stability
  • Particles then grow spherically to minimize free
    surface energy
  • Particles stop growing when they again reach
    colloidal stability

5
Multi-layer growth and self-sharpening
1 Shell 650nm (20kx)
2 Shells 690nm (20kx)
Core 450nm (20kx)
  • Self-sharpening growth leads to lower
    polydispersity
  • Also allows fluorescence doping

6
Making silica spheres luminescent
  • Hydrophilic dyes can sometimes be incorporated
    during growth
  • Covalent attachment via silylation chemistry
    then addition of more shells
  • Dye incorporation usually prevents calcination

7
Fluorescent core-shell silica particles
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
8
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
9
Hydrodynamic radius Dye - 1 nm Core - 2
nm Core-shell 15 nm
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
10
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
11
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
12
Ulrich Weisner, Chem. Soc. Rev., 2006, 35,
10281042
13
(No Transcript)
14
Sensing with colloidal silica PEBBLES
  • PEBBLES R. Kopelman (Univ. Mich.)
  • sol-gel, ormosil, and polymer spheres filled
    with analyte specific dye
  • can be used as intracellular nano-biosensors

Xu, H. , et.al., Anal. Chem. 2001, 73, 4124.
15
Mesoporous colloidal silica as sensor substrate
  • Spheres doped with Ru(bipy)32 through ion
    exchange process
  • Ru(bipy)32 emits 615 nm
  • Emission is quenched by O2

Quenching is fast and reversible
A. M. Jakob, R. Hudgins, M. El-Kouedi, T. A.
Schmedake Submitted, 2006.
16
Applications of Luminescent Colloidal Silica
1. Fluorescence detection of a single E-coli
3. Photonic Crystals / Colloidal Crystals / Opals
X. J. Zhao, et. al., Proc. of the Nat. Acad. of
Sci., 2004, 101, 15027.
2. Blood flow monitoring
V. L. Colvin, Adv. Mat., 2001, 13, 389.
See review L. Wang, K. M. Wang, S. Santra, X. J.
Zhao, L. R. Hilliard, J. E. Smith, J. R. Wu and
W. H. Tan, Anal. Chem., 2006, 78, 646.
Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel,
R. K. Jain and M. G. Bawendi, Adv. Mat., 2004,
16, 2092.
17
Immunoassays
L. Wang, et. al. , Anal. Chem., 2006, 78, 646.
18
Immunoassays
L. Wang, et. al. , Anal. Chem., 2006, 78, 646.
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
J.N. Anker and R. Kopelman. "Magnetically
modulated optical nanoprobes," Appl. Phys. Lett. 
82, 1102 (2003).
26
Aminopropylsilica Sphere Preparation

Properties Same as SFB silica Aminopropyl groups
are spread throughout the silica network Positive
surface charge Modified SFB procedure Ethanol
solvent 3.0 M H2O 0.5 M NH3 0.17 M
TEOS Co-condensation of APTES Stir for 3 hours _at_
250C
Aminoproplytriethoxysilane (APTES)
27
A. M. Jakob and T. A. Schmedake, Chem. Mater.,
2006, 18, 3173-3175.
28
Tailored properties
29
Luminescence
30
Quantum Yield
Emission spectra of separate ethanol solutions
with the same absorbance Quantum yield was found
to be as high as 12 POPOP 2-2-(1,4-phenylene
)bis5-phenyloxazole
31
Long-lifetime Photoluminescence
  • Spheres calcined over 500oC exhibit long lifetime
    photoluminescence visible for more than 10
    seconds at room temperature.
  • The long lifetime photoluminescence decay was
    modeled using multi-exponential decay function
    combining a simple decay term and a stretched
    exponential decay term.

Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
32
The stretching parameter
  • The ß parameter can result from dispersive
    transport of the photoexcited electrons and/or
    holes in the solid due to either
  • Multiple trapping and detrapping carriers
  • Hopping or tunnelling carriers

Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007 91, 1-3
33
Temperature dependence studies
  • The ß parameter is temperature independent over
    the entire temperature range studied which is
    indicative of a hopping mechanism
  • The simple exponential decay term appears to be
    temperature independent at least until 400K

Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
34
Temperature dependence studies cont
  • For single exponential decay, average lifetime
    (t) is
  • t 1/k
  • For stretched exponential decay, k is time
    dependent, average lifetime lttsgt is

35
Temperature dependence studies cont
  • The stretched exponential component is more
    susceptible to competing pathways

Soriano, R. B., Schmedake T. A., et al., Appl.
Phys. Lett ., 2007, 91, 1-3
36
Potential Applications- Imaging/Bioassays
  • Advantages of dye-doped silica particles over
    traditional fluorophores
  • Magnified signal for increased sensitivity
  • Easy conjugation to biomolecules
  • Increased photostability
  • Decreased sensitivity to environment
  • Advantages of luminescent silica particles
    fabricated with APTES compared to other dye-doped
    particles
  • stable at very high temperatures
  • Long lifetimes allows gating of short lifetime
    interferences
  • Low probable cytotoxicity

37
Acknowledgements
Robert Hudgins Adam Jakob Essoyodou
Kpatcha Jasmine Gregory Ronald Sorianno
Funding UNC-Charlotte Junior Faculty Research
Grants Research Corporation Cottrell College
Award DARPA / ARL
38
Radiative Processes in Dielectric Spheres
The rates of radiative processes can be
controlled by altering the electromagnetic vacuum
field to which the oscillating dipole is coupled
(e.g. via a dielectric boundary).

2 mm
H. Schniepp and V. Sandoghdar, Phys. Rev.Lett.
25, 257403-1 (2002).
Write a Comment
User Comments (0)
About PowerShow.com