Optimizing a Chess Heuristic Using Evolutionary Algorithms - PowerPoint PPT Presentation

About This Presentation
Title:

Optimizing a Chess Heuristic Using Evolutionary Algorithms

Description:

Chess and AI in History. Hoaxes. The Automaton Chess-Player. Ajeeb automaton. Endgame Machine (1890) ... 1997 Deep Blue (vs Kasparov) Why Optimize (aka Motivation) ... – PowerPoint PPT presentation

Number of Views:110
Avg rating:3.0/5.0
Slides: 12
Provided by: web78
Learn more at: http://web.mst.edu
Category:

less

Transcript and Presenter's Notes

Title: Optimizing a Chess Heuristic Using Evolutionary Algorithms


1
Optimizing a Chess Heuristic Using Evolutionary
Algorithms
  • Benjamin Rhew
  • 11-29-04

2
Chess and AI in History
  • Hoaxes
  • The Automaton Chess-Player
  • Ajeeb automaton
  • Endgame Machine (1890)
  • 1950s True Chess Playing
  • 1988 Deep Thought
  • 1997 Deep Blue (vs Kasparov)

3
Why Optimize (aka Motivation)?
  • Current evaluation method is becoming obsolete
  • Evaluate against optimized heuristic instead
  • Apply to other similar, more difficult problems
  • Other games
  • Optimization problems
  • etc

4
The Problem
  • Take a previously existing heuristic and evolve
    it so that it becomes more effective
  • More generally, development of a heuristic to be
    used in a game-tree search algorithm

5
Representing an Individual
  • An individual has several genes, with most genes
    represented by a 64 by 64 array.
  • Genes that are not arrays are single integers.
  • Each of these genes corresponds to a heuristic
    for one piece, sometimes distinguished by color.

-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
6
Evolutionary Operators
  • Crossover
  • Uniform based on genes (no sub-gene crossing)

-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
-10,-5,-5,-5,-5,-5,-5, -10, -5 , 0, 0, 3,
3, 0, 0, -5, -5 , 0, 5, 5, 5, 5, 0, -5,
-5 , 0, 5,10,10, 5, 0, -5, -5 , 0,
5,10,10, 5, 0, -5, -5 , 0, 5, 5, 5, 5,
0, -5, -5 , 0, 0, 3, 3, 0, 0, -5,
-10,-5,-5,-5, -5, -5,-5,-10
7
Evolutionary Operators
  • Mutation
  • 1/n chance of mutating, where n is the number of
    genes.
  • Once a gene is picked, every value in it is
    mutated by a gaussian random value.

8
Other Evolutionary Parameters
  • Uses the Parallel Framework to speed up
    calculation
  • Split into 10 islands of 10 individuals each
  • Passes 1 individual every 10 generations
  • Individual is random

9
The Fitness Function
  • Fitness is based on win/lose/stalemate
  • Win1, lose-1, stalemate0
  • Initialized at 10 fitness, which is then modified
    by playing original heuristic
  • Each side has 30 minutes total
  • Fitness is then based on playing a random
    solution and both fitnesses will be updated

10
Cassandre
  • Chess engine compatible with winboard and xboard
  • Already has moves and board representation in
    place
  • Only need to provide heuristic

11
Questions?
Write a Comment
User Comments (0)
About PowerShow.com