Title: EVLA FrontEnd CDR WVR Option
1EVLA Front-End CDR
- Water Vapor Radiometer
- Option
2Water Vapor Radiometer
- Development project
- Not in EVLA baseline plans
- If successful, has implications for EVLA
3WVR.why?
- Water vapor emission in the atmosphere increases
electrical path length resulting in phase
fluctuations in the astronomical data - The effect of these fluctuations is greater at
shorter wavelengths - Measuring fluctuation of the amplitude of water
vapor emission at 22 GHz enables a phase
correction to be generated and applied to
astronomical data
4Current WVR system
- The current WVR detection scheme uses three
channels centered on the water line - The bandwidth and frequency of the channels are
limited by RFI generated in the present LO scheme
(From Butler 1999)
5ScientificRequirements
- Defined by need to measure Q band phase
fluctuations to 10 deg rms - Fractional amplitude stability of 104
- Timescales 2 sec to 30 min
6VLA WVR block diagram
7WVR prototype stability measurements, using a K
band noise diode as source
8Correlation between phase and WVR output for two
VLA antennas
Baseline length 800 m, sky clear, 22 GHz
Baseline length 2.5 km, sky cover 50-75,
forming cumulus, 22 GHz
BLUE Phase corrected using the scaled WVR
output RED Uncorrected phase GREEN Scaled WVR
output
9EVLA Compact WVRPrototype Module
- The Compact WVR concept uses an integrated module
with MMIC and drop-in devices (amps, switches,
detectors) and microstrip filters - Cheaper than a connectorized version
- Smaller size less mass
- Better thermal stability
- Easier to mass produce
- More frequency bands (5 filters rather than 3)
- Dark Current switch allows DC offsets to be
determined - Input switch allows selection between LCP RCP
signals or between Rx a Termination (or Noise
Source) for calibration
10CWVR MMIC
- 15 MMIC chips
- 23 chip caps
- 7 circuit substrates
- 110 wire bonds
- 30 initial savings vs. connectorized version
11EVLA K-Band with Compact WVR(Multiplexed Dual
Channel)
Dewar
KL Filter 13FV10- 22250/U8500
MICA T-318S30
Quinstar QLN-2240J0 Pogt10dBm NF lt 2.5 dB
MICA T-318S30
Miteq TB0440LW1 Pogt9dBm CL lt 10dB
MICA T-708S40
TTT Filter K4906- 8-16.5G
MICA T-318S20
MICA T-318S20
Krytar 262210
MICA T-318S20
MICA T-708S35
RCP IF Out 8-18 GHz
RF/IF Box
NRAO CDL
Pamtech KYG2121-K2 (w/g)
WVR Box
10 dB
32dB
RCP
35dB
8-16 GHz
Temperature Stabilized Plate
LNA
Ditom DF2806 13.5-21.5 GHz
x2
15-18 GHz
18-26 GHz
Noise/COM NC 5242 (w/g)
MDL 42AC206
Atlantic Microwave AB4200
MICA T-318S20
Doubler
TCal
Compact WVR
Pol
Noise Diode
29-37 GHz
0 dBm
18 dBm
WR-42 To SMA
0?3 dBm
Krytar 6020265 2-26.5 GHz
x2
MAC Tech PA82072H (2F) 13.5-21.5 GHz (16.0-19.3
GHz)
LO Ref
Doubler
Norden Doubler
LNA
8-16 GHz
35dB
LCP
32dB
10 dB
NRAO CDL
Pamtech KYG2121-K2 (w/g)
Old
LCP IF Out 8-18 GHz
KL Filter 13FV10- 22250/U8500
MICA T-318S30
Quinstar QLN-2240J0 Pogt10dBm NF lt 2.5 dB
MICA T-318S30
Miteq TB0440LW1 Pogt9dBm CL lt 10dB
MICA T-318S20
MICA T-708S40
MICA T-708S35
TTT Filter K4906- 8-16.5G
MICA T-318S20
MICA T-318S20
Krytar 262210
Some New
New
12Prototype Compact WVR
Frequency Multiplexer
Matched Detectors
DC Amp Gain 50
Digital Attenuator
Fixed Pad
LCP In
DC
F 19.25
19.25 / 1.50 GHz
Dark Current Switch
Input Mode Switch
Digital Attenuator
Second Post-amp
DC
21.00 / 0.75 GHz
F 21.00
35dB
22.25 / 1.00 GHz
DC
F 22.25
NF lt 5 dB PO gt 20 dBm
0, 3 6 dB IL 3 dB PO gt 15 dBm
IL 1.5 dB PO gt 15 dBm
IL 1.5 dB PO gt 15 dBm
DC
23.50 / 0.75 GHz
F 23.50
Termination
25.25 / 1.50 GHz
DC
F 25.25
RCP In or Termination
(Chopper Stabilized)
(Linearity Temp)
(Optional)
0, 3 6 dB IL 3 dB PO gt 15 dBm
IL 2.5 dB
13Matt Morgans MMIC Module
MMMMICM
5 channel V-F
Noise Diode
FIBER OUTPUTS
14EVLA CWVR
15EVLA K-BandImpact of WVR on Rx Performance (with
TLNA10K)
16Preliminary CWVR data
17Future CWVR plans
- Continue evaluating MMIC module in the lab using
a noise source and then a K band receiver - Evaluate RFI environment in an EVLA antenna to
determine filter bandpasses - Design/Test 5 channel MIB interface
- Contingent on funding and manpower