A neural approach to the analysis of CHIMERA experimental data PowerPoint PPT Presentation

presentation player overlay
About This Presentation
Transcript and Presenter's Notes

Title: A neural approach to the analysis of CHIMERA experimental data


1
A neural approach to the analysis of CHIMERA
experimental data
  • CHIMERA Collaboration
  • S.Aiello1, M. Alderighi2,3, A.Anzalone4,
    M.Bartolucci5, G.Cardella1, S.Cavallaro4,7, M.
    DAgostino6 ,E.DeFilippo1, E.Geraci4, M.Geraci1,
    F.Giustolisi4,7, P.Guazzoni3,5, M.Iacono Manno4,
    G.Lanzalone1,7, G.Lanzanò1, S.LoNigro1,7,
    G.Manfredi5, A.Pagano1, M.Papa1, S.Pirrone1,
    G.Politi1,7, F.Porto4,7, S.Russo5,
    S.Sambataro1,7, G.Sechi2,3, L.Sperduto4,7,
    C.Sutera1, L.Zetta3,5
  • 1Istituto Nazionale di Fisica Nucleare, sez di
    Catania, Catania, Italy
  • 2Istituto di Fisica Cosmica, CNR, Milano, Italy
  • 3Istituto di Fisica Nucleare, sez. di Milano,
    Milano, Italy
  • 4 Istituto di Fisica Nucleare, Laboratorio
    Nazionale del Sud, Catania, Italy
  • 5Dipartimento di Fisica dellUniversita, Milano,
    Italy
  • 6Dipartimento di Fisica dell'Universita degli
    Studi and Istituto di Fisica Nucleare, sez. di
    Bologna, Bologna,Italy
  • 7Dipartimento di Fisica dell'Universita,
    Catania, Italy

2
Outline
  • Detector characteristics
  • Automatic data analysis
  • Proposed approaches
  • Our neural approach
  • System overview
  • Results

3
CHIMERA (Charged Heavy Ion Mass and Energy
Resolving Array)
9 wheels
1192 Si-CsI(TI) detection cells
4
Detection cell
5
Scatter plot from CHIMERA
58 Ni 27 Al Einc 30 AMev
  • sparse data
  • low S/N
  • density variation
  • high frequency noise
  • characteristic frequency ridges/valleys
  • low frequency background

6
banana extraction
?
D E-Si
Fast-CsI(TI)
Counts
D E-Si
7
1-D frequency distribution
Z-lines
D E-Si
Fast-CsI(TI)
Counts
Fast-CsI(TI)
D E-Si
D E-Si
8
Proposed approach
  • FFT not satisfactory results
  • filtering edge detection ill-posed problem
  • contextual image segmentation Benkirane et al.
    95 Canny filtering a priori information
    not easily applicable
  • interactive technique unpractical for a lot
    of spectra

yet, density modulation can be easily perceived
by sight
9
Our solution
  • Using emergent perception mechanisms of
    biological visual systems
  • Grossbergs neural networks
  • mathematically defined
  • extract information from the global structure of
    data (rather local relationship)
  • no training
  • successfully applied to SAR and satellite images
    (noisy and incomplete)

10
Implementation
  • 2 levels of neural networks for cluster
    determination
  • Procedural algorithms for frequency distribution
    construction
  • Matlab (PC Pentium II, 400MHz)
  • 500 ? 500 pixel processing windows

11
Neural system
Level 2 oriented completion (Bipole Filter)
BF net
Level 1 Adaptive Density Discrimination
ADD net
Window
Input
12
Level 1 ADD net
  • on-center off-surround shunting network
  • density information processing
  • comparison between on-center and off-surround
    areas
  • low-pass filtering of the spatial frequencies in
    the input window sensitivity to ridge-valley
    modulation
  • clusters as incomplete and irregular strips

13
ADD net
14
Level 2 BF nets
  • additive networks
  • long-term cooperation along selected directions
  • bipole filters
  • different filtering masks according to hyperbolic
    trends of data
  • clusters as complete strips

Ex.
105
135
15
Example 1
valley clusters
16
Example 2
ridge clusters
17
Conclusions
  • Grossbergs approach is good for automatic
    determination of bananas
  • Density processing is
  • dependent on the image structure only
  • independent from the underlying physics
  • Intensive computation (500 ? 500 neurons)
  • Processing whole matrices and improving algorithm
    efficiency as future works
Write a Comment
User Comments (0)
About PowerShow.com