Modal, Dynamic and Temporal Logics - PowerPoint PPT Presentation

About This Presentation
Title:

Modal, Dynamic and Temporal Logics

Description:

An Axiom System for Prepositional Logic (A (B C)) (A B) (A C) A (B A) (( A false ) false ) A ... An Axiom System for. Predicate Logic x (A(x) B(x)) ( xA(x) xB(x) ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 33
Provided by: csG6
Learn more at: https://cs.gmu.edu
Category:

less

Transcript and Presenter's Notes

Title: Modal, Dynamic and Temporal Logics


1
Modal, Dynamic and Temporal Logics
  • SWE 623

2
Modal Logic
  • Logic of Necessity and Possibility
  • Has a philosophical background
  • Syntax has two extra symbols
  • read as necessity ( X is necessarily X)
  • Also called box X
  • ltgt read as possibility (ltgt X possibly X)
  • Also called diamond X
  • See http//turing.wins.uva.nl/mdr/AiML/background
    .html

3
Kripke Semantics of Modal Logic
  • The universe seen as a collection of worlds.
  • Truth defined in each world.
  • Say U is the universe.
  • I.e. each w e U is a prepositional or predicate
    model.

W4
W1
W2
W3
4
Kripke Semantics of Modal Logic
  • W1 satisfies X if X is satisfied in each
    world accessible from W1.
  • If W3 and W4 satisfy X.
  • Notation
  • W1 X if and only if
  • W3 X and W4 X
  • W1 W1 satisfies ltgt X if X is satisfied in at
    least one world accessible from W1.

W4
W1
W2
W3
  • Notation
  • W1 ltgt X if and only if
  • W3 X or W4 X

5
Proof Rules for Modal Logic
  • Modal Generalization
  • A
  • A
  • Monotonicity of ?
  • A ? B
  • ? A ? ? B
  • Monotonicity of ?
  • A ? B
  • ? ? A ? ?B

6
An Axiom System for Prepositional Logic
  • (A ? (B ? C)) ? (A ? B) ? (A ? C)
  • A ? (B ? A)
  • (( A ? false ) ? false ) A
  • Modus Ponens
  • A, A -gt B
  • ? ? B

7
An Axiom System for Predicate Logic
  • ?x (A(x) ? B(x)) ? (?xA(x) ? ?xB(x))
  • ?x A(x) ? At/x provided t is free for x in A
  • A ? ?x A(x) provided x is not free in A
  • Modus Ponens
  • A, A -gt B
  • B
  • Generalization
  • A
  • ?x A(x)

8
Some Facts About Modal Logic
  • A couple of Valid Modal Formulas
  • ? (A ? B ) lt-gt (? A) ? (? B)
  • (A ? B ) lt-gt ( A) ? ( B)
  • ? (false) ?(false)
  • (? A) ? (B) ? ? (A ? B )
  • Counter-examples to invalid modal formulas
  • (? A) ? ( A )

9
Proving Modal Formulas
10
A counter-example in Modal Logic
11
Dynamic Logic
  • A special kind of Modal Logic where each world is
    a system state.
  • Definition of State
  • The set of variables x1, xn.
  • x1 a1, xn an. is a state, where each variable
    takes a value.
  • Accessibility is state change perhaps due to
    executing code.
  • x1 a1, xn an is changed to x1 b1, xn an
    by the program (x1 b1).

12
Dynamic Logic
  • Issues
  • What kind of program constructs result in what
    type of state change
  • What is the logic
  • Two Levels
  • Prepositional
  • Only deals with state change at (abstract)
    symbolic level
  • Predicate
  • Details of variables, values and programming
    operators
  • Deals well with non-determinism, concurrency etc.

13
Prepositional Dynamic LogicSyntax
  • If A, B propositions and a, b programs,
  • Following are formulas
  • A /\ B, A ? B, ? A, A ? B, aA, lt agtA are
    formulas.
  • Following are programs
  • U b non-deterministic choice
  • a b sequential composition
  • (A?) a test.
  • a non-deterministic iteration

14
Prepositional Dynamic LogicSemantics
  • A collection of states S si i gt 0.
  • For each state si a notion of satisfiability of
    atomic prepositions. I.e. si A for each A.
  • For each each atomic program a, a relation Ra on
    SxS.
  • Raub Ra u Rb
  • R(A?) (s,s) s A
  • Rab Ra Rb (s1,s3) ? s2 (s1,s2) e Ra and
    (s2,s3) e Rb
  • Ra U Rai i gt0 . Where Rai is defined
    inductively as Ra(i1) Rai Ra and Ra0
    Identity.

15
PDL Semantics - Satisfaction
  • Prepositional connectives as usual
  • I.e. si A /\ B if si A and si B
  • I.e. si A ? B if si A or si B
  • Modal Connectives as in Modal Logic
  • I.e. si aA, if for all states sj such that
    (si , sj) e Ra sj A
  • I.e. si ltagtA, there is a state sj with (si ,
    sj) e Ra and sj A

16
PDL Axiom System
  • Axioms of prepositional logic
  • a (A ? B) ? (aA ?aB)
  • a (A /\ B) lt-gt (aA /\ aB)
  • a U bA lt-gt (a A /\ b A)
  • a bA lt-gt a b A
  • B?A lt-gt (B /\ A)
  • B /\ a a A lt-gt a A
  • B /\ a( A ?aA) ? a A

17
PDL Axiom System Rules
  • Modus Ponens
  • A, A -gt B
  • B
  • Modal Generalization
  • A
  • a A

18
Some Derived Rules for PDL
  • Monotonicity of ltagt
  • A -gt B
  • ltagtA -gt ltagtB
  • Monotonicity of a
  • A -gt B
  • aA -gt aB

19
Some Provable Properties
  • a (A /\ B) ? (aA /\aB)
  • ltagt (A \/ B) lt-gt (ltagtA \/ ltagtB)
  • (ltagtA /\ a B) ? ltagt(A /\ B)
  • a A lt-gt (? ltagt(? A))
  • ltagtfalse lt-gt false
  • ltagtltbgtA lt-gt ltabgtA,
  • abA lt-gt ab A
  • lt a U bgtA lt-gt (ltagtA \/ ltbgtB)
  • a U bA lt-gt (aA /\ bB)

20
Translating Giress Style Pre/Post Conditions to
PDL
  • Skip True?
  • Fail false?
  • If A then a else b (A?a) U (?A?b)
  • While A do a (A?a) (?A?)

21
First-Order Dynamic Logic
  • Syntax
  • The same definition as predicate logic except for
    the additions
  • If A is a formula and a is a program, then aA,
    ltagtA are formulas.
  • If A is a formula, then A? is a test. (I.e. a
    program)
  • If A is quantifier free then its said to be a
    basic test, and otherwise a rich test.

22
First-Order Dynamic Logic
  • Semantics Transitions between states defined as
  • R(X a) (S, S) if S(x) S(a) and
    S(y) S(y) for Y ! X
  • R(A?) (S,S) S A
  • Definitions of U, are same as in the
    prepositional case.

23
Axiomatization
  • Axioms
  • All axioms for predicate logic
  • All axioms for PDL
  • At/x lt-gt lt x tgtA(x)
  • A lt-gt A, A is obtained by replacing any program
    a by zx a xz, where a is a with all
    occurrences of x replaced by z, and z does not
    appear in a

24
Axiomatization Rules
  • modus ponens
  • A, A -gt B
  • B
  • Generalization
  • A A
  • a A ? x A(x)
  • Infinitary convergence
  • A -gt anB for all n
  • B -gt aB

25
Some Example Reductions I
  • Reduce ?XX1 ((Xa) U (Xb)) ? A(X)
  • Step1 ? XX1 (Xa) ? (Xb) ? A(X)
  • Step2 ? XX1 ? ? (Xa) ? A(X) ? ltXX1
    ? ? (Xb) ? A(X)
  • Step3 ? XX1 ? A
  • Step4 A(a) ? A(b)

26
Some Example Reductions II
  • Reduce xx1(xa U xb) B(X)
  • Step1 xa1 U xb1B(x)
  • Step 2 xa1B(x) /\ xb1B(x)
  • Step 3 B(a1) /\ B(b1)

27
Temporal Logic
  • Special kind of modal logic to reason about time.
  • There are many kinds of Temporal Logics
  • Linear and Branching Time
  • Future and Past times
  • Discrete and Continuous time
  • Operators in Temporal Logics (MacMillans
    Notation)
  • O next time F
  • always G
  • ? some times X
  • ? until U

28
Prepositional Syntax
  • Atomic Proposition letters p, q etc.
  • If p, q are propositions then so are.
  • Meaning Logical Notation Model Checking
  • Next Time p Op Xp
  • All ways p p Gp
  • In the future p ?p Fp
  • p until q p ? q pUq

29
Prepositional Semantics
  • A collection of Kripke Worlds including the
    current one.
  • Accessibility relation is evolution of time.

30
Prepositional Semantics II
  • Op if some world accessible from the current
    satisfies p.
  • p if every world accessible from the current
    satisfies p.
  • ? p if some world in the future from the
    current satisfies p.

31
PTL Axioms and Rules I
  • Axioms
  • (A -gtB) -gt(A -gt B)
  • O(A -gtB) -gt (OA -gt OB)
  • (O ? A) lt-gt (?OA)
  • A -gt (A /\ OA)
  • (A -gt OA) -gt (A -gt A)
  • A ? B -gt ?B
  • A ? B lt-gt B \/ (A /\ O(A ? B ))

32
PTL Axioms and Rules II
  • Rules
  • modus ponens
  • generalization
  • A
  • A
  • A
  • O A
Write a Comment
User Comments (0)
About PowerShow.com