ICOM 4015 Advanced Programming - PowerPoint PPT Presentation

About This Presentation
Title:

ICOM 4015 Advanced Programming

Description:

roots(a, b, c, r1, r2) - returns the number of ... Implements recursive and interative versions of algorithms for // computing the factorial (N! ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 35
Provided by: ValuedGate2254
Learn more at: http://www.ece.uprm.edu
Category:

less

Transcript and Presenter's Notes

Title: ICOM 4015 Advanced Programming


1
ICOM 4015 Advanced Programming
  • Lecture 2
  • Procedural Abstraction
  • Reading LNN Chapter 4, 14

Prof. Bienvenido Velez
2
Procedural AbstractionTopics
  • Topic 1
  • Functions as abstract contracts
  • Parameter passing
  • Scoping
  • Topic 2
  • Functional arguments
  • Topic 3
  • Top-down modular design
  • Stepwise refinement
  • Topic 4
  • Recursive functions
  • Recursion vs. Iteration
  • Topic 5
  • Further procedural abstraction
  • Function overloading and templates

3
Procedural Abstraction I Outline
  • Functions as abstract contracts
  • Value/Reference parameters
  • Procedural Abstraction Defined
  • Scope Rules

4
Example 0Finding the roots of ax2 bx c
include ltcmathgt // roots(a, b, c, r1, r2) -
returns the number of // real roots of ax2 bx
c. If two roots exists // they are returned is
r1 and r2. If only one root // exists, it is
returned in r1. Otherwise the value // of r1 and
r2 is undetermined. int roots(float a, float b,
float c, float r1, float r2) float d b
b - 4.0 a c if (d lt 0)
return 0 r1 (-b sqrt(d)) / (2.0
a) if (d 0) return 1
r2 (-b - sqrt(d)) / (2.0 a) return
2
WHAT?
formal parameters
HOW?
roots.cc
definitions
int roots(float a, float b, float c,float r1,
float r2)
roots.h
declarations
5
Procedural Abstraction
  • A function should accomplish ONE well defined and
    easy to remember task
  • A function establishes a contract between callers
    and implementers
  • The implementer may select any implementation
    that satisfies the contract.
  • The contract should specify WHAT task the
    function accomplishes, NOT HOW it accomplishes it

HOW is hidden or abstracted out, hence the
name procedural abstraction
6
Scope Rules Parameter Passing Mechanisms
include ltiostreamgt // Forward definitions int
f(int x) // Global definitions static int x
0 int y 0 int main() for (int i0 i
lt 5 i) int arg x int r f(x)
cout ltlt " f(" ltlt arg ltlt ") -gt " ltlt r cout
ltlt " Glob x" ltlt x ltlt endl cout ltlt " Glob
y" ltlt y ltlt endl int f(int x) int
y0 static int z0 y z2 x y
z cout ltlt " Loc x" ltlt x cout ltlt " Loc y"
ltlt y cout ltlt " Loc z" ltlt z return z
Global in Module
Global
Local to For Loop
Local to Block
Local to Function
bvelez_at_amadeus gtgt scope1 Loc x3 Loc y1 Loc
z2 f(0) -gt 2 Glob x3 Glob y0 Loc x5 Loc y1
Loc z4 f(3) -gt 4 Glob x5 Glob y0 Loc x7 Loc
y1 Loc z6 f(5) -gt 6 Glob x7 Glob y0 Loc x9
Loc y1 Loc z8 f(7) -gt 8 Glob x9 Glob y0 Loc
x11 Loc y1 Loc z10 f(9) -gt 10 Glob x11 Glob
y0 bvelez_at_amadeus gtgt
7
Diagramas de Bloques
x
y
main
for
i
arg
r
f
x
y
z
8
Procedural Abstraction ISummary of Concepts
  • Value parameters changes remain local to
    function. Function works with a copy of the
    argument.
  • Reference parameters changes propagate to
    argument. Function works with original argument.
  • Procedural abstraction a function establishes a
    contract with its callers on what it
    accomplishes, hiding how it accomplishes it.

9
Procedural Abstraction I - ScopingSummary of
Concepts II
  • Definition Scope of a declaration
  • region of code where declaration is active
  • Scope rules allow better control over the
    namespace
  • Local namespaces (e.g. functions, blocks)
    independent of each other
  • Local declarations take precedence over global
    declarations

10
Procedural Abstraction II Outline
  • Procedural arguments

11
IntegrationWithout Procedural Arguments
include ltiostreamgt // Forward
definitions double integrateSqr(double a, double
b, double n) double integrateCube(double a,
double b, double n) int main() cout ltlt
"Integral of x2 in 0,1 " ltlt
integrateSqr(0.0, 1.0, 10000) ltlt endl
cout ltlt "Integral of x3 in 0,1 " ltlt
integrateCube(0.0, 1.0, 10000) ltlt
endl double integrateSqr(double a, double b,
double n) double delta (b-a) / double(n)
double sum 0.0 for (int i0 iltn i)
float x a delta i sum x x
delta return sum double
integrateCube(double a, double b, double n)
double delta (b-a) / double(n) double sum
0.0 for (int i0 iltn i) float x a
delta i sum x x x delta
return sum
bvelez_at_amadeus /icom4015/lec05 gtgt
example2 Integral of x2 in 0,1
0.333283 Integral of x3 in 0,1
0.24995 bvelez_at_amadeus /icom4015/lec05 gtgt
12
Example 3 IntegrationWith Procedural Arguments
include ltiostreamgt // Forward
definitions double integrate(double a, double b,
double n, double f(double
x)) double cube(double x) double sqr(double
x) int main() cout ltlt "Integral of x2 in
0,1 " ltlt integrate(0.0, 1.0, 10000,
sqr) ltlt endl cout ltlt "Integral of x3 in
0,1 " ltlt integrate(0.0, 1.0, 10000,
cube) ltlt endl double integrate(double
a, double b, double n, double
f(double x)) double delta (b-a) /
double(n) double sum 0.0 for (int i0
iltn i) sum f(a delta i) delta
return sum double cube(double x)
return x x x double sqr(double x)
return x x
bvelez_at_amadeus /icom4015/lec05 gtgt
example2 Integral of x2 in 0,1
0.333283 Integral of x3 in 0,1
0.24995 bvelez_at_amadeus /icom4015/lec05 gtgt
13
Procedural Abstraction IIFunctional
ArgumentsSummary of Concepts
  • Functional arguments
  • Allow abstraction over processes and functions

14
Procedural Abstraction III Outline
  • Top-down stepwise refinement

15
Step 0 - Outline
// top-down.cc // Computes weighted average score
of grades. Grades // include two assignments two
midterm exams and one final exam. // All grades
are input from standard input, but the weights of
// each type of grade are hard coded. // C
header files extern "C" // Standard C
header files include ltiostreamgt // My own C
header files // Macro definitions // Forward
definitions of auxiliary functions // Global
declarations // Main function int main() //
Read assignment grades // Read exam grades //
Read final exam grade // Calculate average //
Print report return 0 // Auxiliary
functions
16
Step 1 Code Stubs
int main() float assignment1, assignment2
float exam1, exam2 float finalExam
readAssignmentGrades(assignment1, assignment2)
readExamGrades(exam1, exam2)
readFinalGrade(finalExam) float avg avg
calculateAverage(assignment1, assignment2,
exam1, exam2,
finalExam) printReport(assignment1,
assignment2, exam1, exam2,
finalExam, avg) return
0 // Auxiliary functions void
readAssignmentGrades(float assignment1, float
assignment2) void readExamGrades(float ex1,
float ex2) void readFinalGrade(float
final) float calculateAverage(float
assignment1, float assignment2,
float exam1, float exam2,
float finalExam) void printReport(float
assignment1, float assignment2,
float exam1, float exam2,
float finalExam, float
average)
17
Step 2 - Refine
// Auxiliary functions void readAssignmentGrades(f
loat assignment1, float assignment2) //
Read a float in 0,100 into assignment1 //
Read a float in 0,100 into assignment2 void
readExamGrades(float ex1, float ex2) //
Read a float in 0,100 into ex1 // Read a
float in 0,100 into ex2 void
readFinalGrade(float final) // Read a float
in 0,100 into final float calculateAverage(flo
at assignment1, float assignment2,
float exam1, float exam2,
float finalExam) // Calculate
assignments average // Calculate exams average
// Calculate weighted average void
printReport(float assignment1, float
assignment2, float exam1,
float exam2, float
finalExam, float
average) // print assignment grades //
print exam grades // print final exam grades
// print weighted average
18
Top-down stepwise refinement cycle
outline
refine
code stubs
19
Procedural Abstraction IIITop-down design
Stepwise RefinementSummary of Concepts
  • Top-Down design / stepwise refinement
  • A cyclic development technique
  • Each cycle adds a level of detail to the code
  • We have a functioning (although incomplete)
    program after every iteration of the process

20
Procedural Abstraction IV Outline
  • Recursive Functions
  • Activation records, call stacks
  • Expressiveness of recursion vs. iteration
  • Efficiency concerns
  • function call overhead
  • duplication of work
  • process complexity

21
Example 0Factorials
// factorials.cc // Implements recursive and
interative versions of algorithms for //
computing the factorial (N!) of a number. //
Standard C header files include ltiostreamgt //
Forward definitions of auxiliary functions long
recFactorial(long n) long iterFactorial(long
n) int main() long number while(true)
cout ltlt "Please enter a positive number (or
negative to end) " cin gtgt number if
(number lt 0) return 0 cout ltlt "Recursive "
ltlt number ltlt "! " ltlt recFactorial(number) ltlt
endl cout ltlt "Iterative " ltlt number ltlt "!
" ltlt iterFactorial(number) ltlt endl long
recFactorial(long n) if (n0) return
1 else return (n recFactorial(n -
1)) long iterFactorial(long n) long
product 1 for (long i1 iltn i)
product i return product
bvelez_at_amadeus /icom4015/lec07
gtgtfactorials Please enter a positive number (or
negative to end) 3 Recursive 3! 6 Iterative
3! 6 Please enter a positive number (or
negative to end) 4 Recursive 4! 24 Iterative
4! 24 Please enter a positive number (or
negative to end) 5 Recursive 5!
120 Iterative 5! 120 Please enter a positive
number (or negative to end) 6 Recursive 6!
720 Iterative 6! 720 Please enter a positive
number (or negative to end) -1 bvelez_at_amadeus
/icom4015/lec07 gtgtfibonacci
22
Example 1Fibonacci Numbers
// fibonacci.cc // Iterative and recursive
algorithms for computing Fibonacci
numbers ... // Auxiliary Functions long
recFibonacci(long n) if (n0) return
0 else if (n1) return 1
else return (recFibonacci(n-1)
recFibonacci(n-2)) long
iterFibonacci(long n) if (n0) return
0 else if (n1) return 1
long F0 0 long F1 1 long FN for
(long i1 iltn i) FN F0 F1 F0 F1
F1 FN return FN
bvelez_at_amadeus /icom4015/lec07
gtgtfibonacci Please enter a positive number (or
negative to end) 3 Recursive F(3)
2 Iterative F(3) 2 Please enter a positive
number (or negative to end) 4 Recursive F(4)
3 Iterative F(4) 3 Please enter a positive
number (or negative to end) 8 Recursive F(8)
21 Iterative F(8) 21 Please enter a positive
number (or negative to end)
23
Example 1Fibonacci Numbers
// fibonacci.cc // Iterative and recursive
algorithms for computing Fibonacci numbers //
Standard C header files include ltiostreamgt //
Forward definitions of auxiliary functions long
recFibonacci(long n) long iterFibonacci(long
n) int main() long number while(true)
cout ltlt "Please enter a positive number (or
negative to end) " cin gtgt number if
(number lt 0) return 0 cout ltlt "Recursive
F(" ltlt number ltlt ") " ltlt recFibonacci(number)
ltlt endl cout ltlt "Iterative F(" ltlt number
ltlt ") " ltlt iterFibonacci(number) ltlt endl
...
24
Procedural Abstraction IV Iteration vs.
RecursionSummary of Concepts
  • Recursion is as expressive as iteration
  • Iteration can yield faster code
  • less duplication of work
  • less function call overhead
  • Recursion can yield cleaner code
  • may rely on a smart optimizing compiler to
    minimize call overhead

25
Procedural Abstraction V Outline
  • Further procedural abstraction
  • Function overloading
  • Function templates

26
Function OverloadingSQR Function Family
int intSqr (int x) return x x long
longSqr(long x) return x x float
floatSqr(float x) return x x
Without overloading
int sqr (int x) return x x long
sqr(long x) return x x float
sqr(float x) return x x
With overloading
27
Function Templates SQR Function Family
int sqr (int x) return x x long
sqr(long x) return x x float
sqr(float x) return x x
With overloading
template ltclass Tgt T sqr (T x) return x
x
With templates
28
SQRaring different types
// Standard C header files include
ltiostreamgt include ltiomanipgt // Forward
definitions of local auxiliary functions template
ltclass Tgt T sqr(T x) // Main function int
main() cout ltlt " i" ltlt "
sqr(i)" ltlt " sqr(float(i))"
ltlt " sqr(double(i))" ltlt endl for
(int i0 ilt10 i) cout ltlt setw(16) ltlt
i ltlt setw(16) ltlt sqr(i) ltlt setw(16) ltlt
sqr(float(i)) ltlt setw(16) ltlt sqr(double(i))
ltlt endl // Local auxiliary
functions template ltclass Tgt T sqr(T x)
return x x
Templates can reduce code duplication dramatically
29
Output
bvelez_at_amadeus /icom4015/lec09 gtgtsqr
i sqr(i) sqr(float(i))
sqr(double(i)) 0 0
0 0 1
1 1 1
2 4 4
4 3 9
9 9 4
16 16 16
5 25 25
25 6 36
36 36 7
49 49 49
8 64 64
64 9 81
81 81 bvelez_at_amadeus
/icom4015/lec09 gtgt
30
Anatomy of a Function Template
T is a type parameter
template ltclass Tgt function
Inside this function T represents any type
Templates are Cs implementation of Parametric
Polymorphism
31
Example 2
// Standard C header files include
ltiostreamgt include ltiomanipgt // Forward
definitions of local auxiliary functions template
ltclass Tgt void swap(T a, T b) template ltclass
Tgt void doSwap(T a, T b) // Main function int
main() cout ltlt " doSwap(1,0)" ltlt endl
doSwap(1,0) cout ltlt endl ltlt endl ltlt "
doSwap(1.0/3.0, 2.0/3.0)" ltlt endl
doSwap(1.0/3.0, 2.0/3.0) cout ltlt endl ltlt endl
ltlt " doSwap(true, false)" ltlt endl
doSwap("hello", "world") // Local auxiliary
functions template ltclass Tgt void doSwap(T a, T
b) T x a T y b cout ltlt "x " ltlt x
ltlt " y " ltlt y ltlt endl swap(x,y) cout ltlt
"swap(x,y)" ltlt endl cout ltlt "x " ltlt x ltlt " y
" ltlt y ltlt endl swap(x,y) cout ltlt
"swap(x,y)" ltlt endl cout ltlt "x " ltlt x ltlt " y
" ltlt y ltlt endl template ltclass Tgt void
swap(T a, T b) T temp a a b b
temp
Variable declaration of type T
32
Example 2 Output
bvelez_at_amadeus /icom4015/lec09 gtgtswap
doSwap(1,0) x 1 y 0 swap(x,y) x 0 y
1 swap(x,y) x 1 y 0 doSwap(1.0/3.0,
2.0/3.0) x 0.333333 y 0.666667 swap(x,y) x
0.666667 y 0.333333 swap(x,y) x 0.333333 y
0.666667 doSwap(true, false) x hello y
world swap(x,y) x world y hello swap(x,y) x
hello y world
33
Procedural Abstraction V Function
OverloadingSummary of Concepts
  • Related functions can be grouped under a common
    name
  • Overloaded functions may have different return
    types, but must have different parameters.
  • The importance of overloading will become clearer
    when we get into classes and object-oriented
    programming

34
Procedural Abstraction V Function
TemplatesSummary of Concepts
  • Programmer declares one function parameterized
    over some type T
  • Compiler instantiates potentially many functions
    for all the different argument types provided
    among all function calls
  • Instances must be well typed, that is, all
    objects should only be used according to their
    types.
Write a Comment
User Comments (0)
About PowerShow.com