Title: Brandon E. B
1Single Chamber Solid Oxide Fuel Cells (SC-SOFC)
Brandon E. Bürgler Nonmetallic Inorganic
Materials ETH Zürich
Thursday, March 19th, 2004
2Outline
- Single Chamber SOFCs
- Experiments
- Modelling Issues
- Outlook
3Single Chamber SOFC
O2 N2
N2
O2
OCV
H2
H2O
Conventional SOFC
Single Chamber SOFC
- Cathode and anode exposed to same gas mixture of
fuel and oxidant - Selectivity of electrodes for either oxidation or
reduction reaction
4SC-SOFC ? conventional SOFC
- Advantages
- Simplified cell sealing
- Elimination of complex flow field structures
- Fast start-up possible
- Costs
- Challenges
- Non-equilibrium gas mixture (explosive from 5 to
15 CH4 in air) - Fuel utilisation?
- Parasitic chemical reactions
5Basic Designs of SC-SOFCs
6Open Questions Aims
- Which parameters influence the OCV and the
maximum power output? - Fundamental model of SC-SOFC including non-ideal
electrodes and CH4 as the fuel - High performance SC-SOFC
7Measurement Setup
- Temperature
- 400 - 700C
- dT/dt lt 2.5C/min
- CH4-air mixture
- Air 100-400ml/min
- CH4 100ml/min, moistened (3 H2O)
Electrical characterisation Galvanostatic
4-point measurements
8Cell Design Preparation
Current collector Pt-mesh
Anode 60wt NiO, 40wt CGO
Electrolyte Ce0.9Gd0.1O1.95 (CGO)
0.2 0.53 mm
10mm
Cathode Sm0.5Sr0.5CoO3-?
Current collector Pt-mesh
9Fuel Cell Cross Section
Anode (160 ?m)
Pt-mesh, cross section (80 ?m )
Electrolyte (330?m)
Cathode (140 ?m)
Pt-mesh, longitudinal section (80 ?m)
10Open Circuit Voltage
MS14 (0.19mm electrolyte)
11U-I Characteristics at different flow
T 600C
12U-I Characteristics at different flow
T 600C
13U-I Characteristics at different flow
T 600C
14U-I Characteristics at different flow
T 600C
15U-I Characteristics at different flow
T 600C
- Pmax 440 mW/cm2 _at_ 100 ml/min CH4 and 200
ml/min Air at 600C
16U-I characteristic at different Temperatures
fAir 200 ml/min
17U-I characteristic at different Temperatures
fAir 200 ml/min
18U-I characteristic at different Temperatures
fAir 200 ml/min
19Open Circuit Voltage
20Electrode Temperatures at OCV
Electrolyte thickness 390?m
? Pronounced heat generation on the anode
21Conclusions from Experiments
- Cells operate at T gt 500C
- Optimum conditions for maximum Power output at T
600C and fair 300 ml/min - Pronounced heat generation at the anode
22Modelling of SC-SOFCs
- Single Chamber SOFC versus Double Chamber
Driving force for ionic current? - Calculations of Equilibrium gas mixtures at anode
- Mixed ionic electronic conducting electrolyte
23What is the driving force for the ionic current?
Assumptions -Hydrogen as fuel, air as
oxidant -Reversible and perfectly selective
electrodes for H2 or O2 -Electrolyte only
O2--conductor
Anode ½ H2 (gas) ? H (A) 2e- O2- (SE/A) 2 H
(A)? H2O (gas)
Cathode ½ O2 (gas) 2e- ? O2- (C)
Riess, I., van der Put, P. J. (1995). "Solid
oxide fuel cells operating on uniform mixtures of
fuel and air." Solid State Ionics 82 1-4.
24Calculation of DmO2-
½ O2 (gas) 2e- ? O2- (C)
½ H2 (gas) ? H (A) e-
O2- (SE/A) 2 H (A)? H2O (gas)
Combination of (7), (8) and (9) yields
The Nernst Voltage is the same for SC- and
conventional SOFCs
25Comment
- Electrodes are not ideally selective nor
reversible. - Direct oxidation of the fuel (parasitical)
lowers OCV. - Improving selectivity of the electrodes will
improve efficiency and reduce fuel waste.
26Operation Principles of a SC-SOFC
CH4 air
CH4 1/2O2 ? 2H2 CO
partial oxidation of methane
CO O2- ? CO2 2e-
p(O2 )
H2 O2- ? 2H2O 2e-
OCV
p(O2 )
O2 4e- ? 2O2-
CH4 air
27Modelling of SC-SOFCs
- Single Chamber SOFC versus Double Chamber.
Driving force for ionic current? - Calculations of Equilibrium gas mixtures at anode
- Mixed ionic electronic conducting electrolyte
28Calculation of equilibrium gas mixtures
CH4 Air
Basic idea Anode Equilibrium reached very fast.
pO2 10-26 atm Cathode non-equilibrium gas
mixtures remains unreacted pO2 0.05 0.17 atm
Thermocalc
Output Concentrations of species CH4, O2, H2,
CO, CO2
Minimisation of Gibbs Free Energy
29Equilibria for Different CH4O2 Ratios
Suitable mixtures for SC-SOFCs
T 600C
X (O)
30Carbon deposition at low x(O)
fCH4 100 ml/min fAir 100 ml/min
gas
solid
?Carbon deposition at low x(O)!!
31Modelling of SC-SOFCs
- Single Chamber SOFC versus Double Chamber.
Driving force for ionic current? - Calculations of Equilibrium gas mixtures at anode
- Mixed ionic electronic conducting electrolyte
32Conductivity of Ce0.8Sm0.2O1.9-x vs. pO2
high pO2 ? conductance predominantly ionic. low
pO2 ? partial reduction ? n-type semiconduction
Electronic conductivity Ce3 pO2-1/4.
? Electrolyte is a mixed ionic electronic
conductor
D. Schneider, M. Gödickemeier and L.J.
GaucklerJ. of Electroceramics, 1, 2, (1997),
165-172
33Transport Model for MIEC- SOFC electrolyte
anode
cathode
Gödickemeier, M., Sasaki, K. and Gauckler, L. J.
(1997)."Electrochemical Characteristics of
Cathodes in Solid Oxide Fuel Cells based on Ceria
Electrolytes."J. Electrochem. Soc. 144(5)
1635-1646.
34Partial currents in MIEC SOFC electrolytes
35Conclusions
- Single Chamber SOFC versus Double Chamber.
Driving force for ionic current? - Calculations of Equilibrium gas mixtures at anode
- Mixed ionic electronic conducting electrolyte
- Thermal Reactor
----
36Acknowledgements
- Prof. Dr. L. J. Gauckler
- A. Nicholas Grundy
- Michel Prestat
- SOFC group
- The entire Nonmets Group
- Diploma students
- Marco Siegrist
- Srdan Vasic
37Thank you for your kind attention