IE 635 Combinatorial Optimization - PowerPoint PPT Presentation

1 / 5
About This Presentation
Title:

IE 635 Combinatorial Optimization

Description:

... connectivity of graphs, paths, cycles (TSP), network flow problems ... Optimization Algorithms for Networks and Graphs, J. Evans, E. Minieka, Dekker, 1992 ... – PowerPoint PPT presentation

Number of Views:118
Avg rating:3.0/5.0
Slides: 6
Provided by: solabK
Category:

less

Transcript and Presenter's Notes

Title: IE 635 Combinatorial Optimization


1
IE 635 Combinatorial Optimization
  • Time Tu, Thr 1300 1430
  • Room ??1? (1120)
  • Instructor Prof. Sungsoo Park (E2-2, Rm. 4112,
    Tel 3121, sspark_at_kaist.ac.kr)
  • Office hour Tu, Thr 1430 1600 or by
    appointment
  • TA Hwayong Choi (ganarisg_at_kaist.ac.kr, Rm.
    4114, Tel 3161)
  • Office hour Tu, Thr 1430 1600 or by
    appointment
  • Text  "Combinatorial Optimization" by W. Cook,
    W. Cunningham, W Pulleyblank, A. Schrijver, and
    class Handouts
  • Grading guideline Midterm 30 - 40, Final 40 -
    60, Homework 10 - 20
  • Home page http//solab.kaist.ac.kr/

2
  • General combinatorial optimization problem
  • Let N 1, , n , finite. c ( c1, ,
    cn )
  • c(F) ?j ? F cj , F ? N.
  • Given collection of subsets ? of N, find max,
    min c(F) F ? ? .
  • Application areas basic structures arising in
    many application areas production, logistics,
    routing, scheduling (facility, manpower),
    location, network design and operation, circuit
    design, bioinformatics, )
  • Science and Engineering
  • Issues trees, connectivity of graphs, paths,
    cycles (TSP), network flow problems (max flow,
    min cost flow), matchings, chinese postman
    problem (T-join), matroid, submodular function
    optimization, semidefinite programming,
  • (knapsack problem, bin packing problem, TSP,
    network design, complexity theory, )
  • Relationship with linear programming (integer
    programming), NP-completeness

3
  • Needed Backgrounds
  • Linear Programming ( duality, polyhedron,
    IE531 level). If not enough background, see
    instructor. Read Appendix in the text for quick
    review.
  • Integer Programming helpful but not necessary.

4
  • References
  • Combinatorial Optimization Networks and
    Matroids, E. Lawler, Holt, Rinehart and Winston,
    1976 (recently republished)
  • Graph Theory with Applications, J. Bondy, U.
    Murty, North Holland, 1976
  • Computers and Intractability A Guide to the
    Theory of NP-Completeness, M. Garey, D. Johnson,
    Freeman, 1979
  • Graphs and Algorithms, M. Gondran, M. Minoux, S.
    Vajda, Wiley, 1984
  • Theory of Linear and Integer Programming, A.
    Schrijver, 1986
  • Integer and Combinatorial Optimization, G.
    Nemhauser, L. Wolsey, Wiley, 1988
  • Optimization Algorithms for Networks and Graphs,
    J. Evans, E. Minieka, Dekker, 1992
  • Network Flows Theory, Algorithms, and
    Applications, R. Ahuja, T. Magnanti, J. Orlin,
    Prentice-Hall, 1993
  • Integer Programming, L. Wolsey, Wiley, 1998
  • Combinatorial Optimization Theory and
    Algorithms, Bernhard Korte, Jens Vygen,
    Springer, 2002
  • Combinatorial Optimization Polyhedra and
    Efficiency, A. Schrijver, Springer, 2003 (3
    volumes, 1881p)

5
  • Top 10 list by W. Pulleyblank ( 2000, Triennial
    Mathematical Programming Symposium, Atlanta)
  • Eulers Theorem, 1736
  • Max-flow Min-cut Theorem, 1956
  • Edmonds Matching Algorithm and Polyhedron, 1965
  • Edmonds Matroid Intersection, 1965
  • Cooks Theorem (NP-completeness), 1971
  • Dantzig, Fulkerson, and Johnson 49 cities TSP,
    1954
  • Held and Karp Lagrangian relaxation of TSP and
    subgradient optimization, 1970, 1971
  • Lin, Kernighan, Local Search for the TSP
    (metaheuristic), 1973
  • Optimization Seperation, 1981
  • Lovaszs Shannon Capacity of Pentagon, 1979
  • Goemans, Williamson, .878 Approximation for Max
    Cut (semidefinite programming), 1994
Write a Comment
User Comments (0)
About PowerShow.com