Convex Sets and Convex Functions - PowerPoint PPT Presentation

About This Presentation
Title:

Convex Sets and Convex Functions

Description:

Convex Sets and Convex Functions – PowerPoint PPT presentation

Number of Views:1151
Avg rating:3.0/5.0
Slides: 84
Provided by: Microsoft65
Category:
Tags: convex | ecu | edu | functions | sets

less

Transcript and Presenter's Notes

Title: Convex Sets and Convex Functions


1
(No Transcript)
2
(No Transcript)
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
Convex Sets and Convex Functions
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
The Barrier Method
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
Diagram copied from Boyd and Vandenberghe
28
(No Transcript)
29
Diagram copied from Boyd and Vandenberghe
30
Diagram copied from Boyd and Vandenberghe
31
Diagram copied from Boyd and Vandenberghe
32
Diagram copied from Boyd and Vandenberghe
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
Quasi-Convex Minimization
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
Set maximumand minimum s
Is (Smax Smin) lt epsilon
Finish withminimum s
Yes
Smax s
Choose s between Smin and Smax
Smin s
Feasible for this s?
No
Yes
48
(No Transcript)
49
(No Transcript)
50
x
y
z
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
Specific Geometric Vision Problems
55
X
x1
x2
x3
56
(No Transcript)
57
X
x
58
(No Transcript)
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
Direction (unit) vectors from cameras (blue) to
points (black) are given Find the positions of
the cameras and points.
67
(No Transcript)
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
This does not happen in strictly quasi-convex
optimization problems.
82
(No Transcript)
83
Conclusions
  • -framework for geometric reconstruction
    problems
  • Efficient computations with SOCP
  • Globally optimal solutions, invariant to
    coordinate systems

Algebraic methods
methods
norm
Write a Comment
User Comments (0)
About PowerShow.com