Title: Conceptual Design Review for PRIMA
1Conceptual Design Review for PRIMA
Frosty Leo
CW Leo
PRIMA Astrometric Observations Polarization
effects Technical Report AS-TRE-AOS-15753-0011
Koji Murakawa (ASTRON) B. Tubbs, R. Mather, R. Le
Poole, J. Meisner, E. Bakker (Leiden), F.
Delplancke, K. Scale (ESO)
_at_Lorentz Center, Leiden on 29 Sep., 2004
2- - OUTLINE -
- 1. Introduction
- Why instrumental polarization analysis?
- 2. Effects of phase error on astrometry
- Operation principle of the FSU
- 3. Polarization properties of PRIMA optics
- Basic concepts of polarization model
3Introduction
- Why instrumental polarization analysis?
- changes phase and amplitude
- VLT telescope, StS, base line, etc
- (telescope pointing, separation, station)
- the fringe sensor unit detects
- a wrong phase delay.
- provide an error in astrometry
- what kind of error? (ltp/100?)
4What we have to do?
- Establish a strategy of analysis
- Study the operation principle of FSU
- Make a polarization model of VLTI optics
- Analysis
- Fringe detection by FSU
- polarization model analysis of VLTI optics
- telescope, StS, base line optics
- time evolution (as a function of hour angle)
- difference between the ref. and the obj.
5The Operation Principleof the Fringe Sensor Unit
Alenia Co., VLT-TRE-ALS-15740-0004
6The original ABCD Algorithm
Complex Amplitude EA -b(P1-P2) EB
b(S1S2) EC b(P1P2) ED -b(S1-S2)
Identical polarization S1 expi(kLopl,1) S2
expi(kLopl,2) P1 expi(kLopl,1) P2
expi(kLopl,2 p/2)
k wave number (k2p/l) Lopl,i optical path
length at the station i
7The original ABCD Algorithm
ABCD signals IA 2b21sin(kLopd) IB
2b21cos(kLopd) IC 2b21-sin(kLopd) ID
2b21-cos(kLopd)
Visibility V 1/2(IAIBICID)4b2 Phase delay
f kLopd arctan(IA-IC/IB-ID)
Lopd optical path difference Lopd
Lopl,1 - Lopl,2
The phase delay can be measured with a simple way.
8The original ABCD Algorithm
Complex Amplitude EA -b(P1-P2) EB
b(S1S2) EC b(P1P2) ED -b(S1-S2)
Different polarization S1 S1expi(kLopl,1) S2
S1expi(kLopl,2) P1 P1expi(kLopl,1) P2
P1expi(kLopl,2p/2)
k wave number (k2p/l) Lopl,i optical path
length at the station i
9The original ABCD Algorithm
ABCD signals IA 2bP121sin(kLopd) IB
2bS121cos(kLopd) IC 2bP121-sin(kLopd) I
D 2bS121-cos(kLopd)
Visibility V 1/2(IAIBICID)
2b2(P12S12) Phase delay f kLopd
arctan(IA-IC/IAIC IBID/IB-ID)
Lopd optical path difference Lopd
Lopl,1 - Lopl,2
The phase delay can be measured not affected by
different polarization status between S and P.
10A Modified ABCD Algorithm
Complex Amplitude EA -b(P1-P2) EB
b(S1S2) EC b(P1P2) ED -b(S1-S2)
Different polarization S1 S1expi(kLopl,1) S2
S2expi(kLopl,2) P1 P1expi(kLopl,1fS) P2
P2expi(kLopl,2fPp/2)
- Different polarization between beam 1 and 2
- phase fS fS,2-fS,1, and fP fP,2-fP,1
- amplitude S2?S1, P2?P1
11A Problem on the ABCD Algorithm
ABCD signals IA b2P12P222P1P2sin(kLopdfP)
IB b2S12S222S1S2cos(kLopdfS) IC
b2P12P22-2P1P2sin(kLopdfP) ID
b2S12S22-2S1S2cos(kLopdfS)
The ABCD algorithm tells a wrong phase delay.
12A Modified ABCD Algorithm
Get another sampling with a p/2(l/4) step IA0
b2P12P222P1P2sin(kLopdfP) IA1
b2P12P222P1P2cos(kLopdfP) IC0
b2P12P22-2P1P2sin(kLopdfP) IC1
b2P12P22-2P1P2cos(kLopdfP)
- only P-polarization is described above.
- assume fixed P1 and P2
13A Modified ABCD Algorithm Polarization Effects
Phase delay FP kLopd fP
arctan(IA0-IC0/IA1IC1) FS kLopd fS
arctan(IB0-ID0/IB1ID1) The FSU may correct
(detect) 1/2(FPFS) kLopd1/2(fPfS)
- Instrumental polarization between two beams
- cannot be principally corrected.
- a phase delay of fS-fP still remains.
14Impact on Astrometry- Polarization Effects on
Object -
- Visibility of the object
- V ltES,1ES,2EP,1EP,22gt
- ltES,12gtltES,22gtltEP,12gtltEP,22gt
- ltES,1ES,2gtltES,1ES,2gt
- ltES,1EP,1gtltES,1EP,1gt
- ltES,1EP,2gtltES,1EP,2gt
- ltES,2EP,1gtltES,2EP,1gt
- ltES,2EP,2gtltES,2EP,2gt
- ltEP,1EP,2gtltEP,1EP,2gt
- ES,1 S1expi(kLopl,1)
- ES,2 S2expi(kLopl,2fS)
- EP,1 P1expi(kLopl,1fSP)
- EP,2 P2expi(kLopl,2fSPfP)
15Impact on Astrometry- Polarization Effects on
Object -
- Cross correlation
- ltES,1ES,2gtltES,1ES,2gt 2S1S2ltcos(klopd-fS)gt
- ltES,1EP,1gtltES,1EP,1gt 2S1P1ltcos(fSP)gt
- ltES,1EP,2gtltES,1EP,2gt 2S1P2ltcos(klopd-fSP-fP
)gt - ltES,2EP,1gtltES,2EP,1gt 2S2P1ltcos(klopdfSP-fS
)gt - ltES,2EP,2gtltES,2EP,2gt 2S2P2ltcos(fSPfP-fS)gt
- ltEP,1EP,2gtltEP,1EP,2gt 2P1P2ltcos(klopd-fP)gt
16Impact on Astrometry- Polarization Effects on
Object -
- Visibility of the unpolarized object
- V ltES,1ES,2EP,1EP,22gt
- ltES,12gtltES,22gtltEP,12gtltEP,22gt
- 2ltS1S2cos(klopd-fS)gt2ltP1P2cos(klopd-fP)
gt - Because of ltcos(fSP)gt0.unpolarized light
- Astrometry of the unpolarized object
- k(Lopd-Lopd)(fS-fP)-(fS-fP)
- kLBLsinq(fS-fP)-(fS-fP) q astrometry
17Impact on Astrometry- Summary -
- Operation principle of FSU
- Phase delay measurement not affected
- by polarization status of the reference.
- A modified ABCD algorithm to calibrate
- instrumental polarization
- 2. Impact on astrometry
- (fS-fP)-(fS-fP) gives error in astrometry
- Similar beam combiner to the FSU is
- encouraged to science instrument
18Polarization Model
Optics can work as a phase retarder or a
polarizer So J Si S Stokes parm, J Jones
matrix Sf JNJN-1J1 S Grouping
Jtel(Az(h), El(h), r, q, l, St) telescope
optics JStS(r, q, l) star separator optics
JBL(l, St) base line optics Model Sf JBL
JStS Jtel S
19Future Activities
1. Telescope optics (Jtel) time evolution
fS-fP(h, Dec, r, q) 2. Star separator optics
(JStS) fS-fP(r) 3. Base line optics (JBL)
fS-fP(St) 4. Color dependence fopd(l),
Ix(l)_at_FSU, group delay