Title: Relation between Two Classes of Binary Quasi-Cyclic Goppa Codes
1Relation between Two Classes of Binary
Quasi-Cyclic Goppa Codes Sergey Bezzateev and
Natalia Shekhunova Saint Petersburg State
University of Airspace Instrumentation Saint-Peter
sburg, Russia e-mail bsv_at_aanet.ru, sna_at_delfa.net
2Binary Goppa codes
- A binary vector a(a1,an) of length n is a
codeword of the ?(L,G) Goppa code if and only if
G(x)- Goppa polynomial, L- locator set.
Parameters of binary Goppa codes Code length n
2m Code dimension kn-mdegG(x) Minimal
distance ddegG(x)1dds.
3Separable Binary Goppa codes
- G(x) is separable polynomial
- Minimal distance for separable binary Goppa codes
- d 2degG(x)1dds
4Main questions
- To find codes with
- Improved estimations of parameters dimension and
minimal distance - Good parameters (VG bound)
- Special structure (large permutation group,
quasi-cyclic, etc.) - ddds
- The binary separable codes with the location set
L from GF(22l) are of the greatest interest
5Background
- M. Loeloeian and J. Conan (1984) presented
(55,16,19) Goppa code - G(x) (x -a9)(x - a12)(x - a30)(x - a34)(x -
a42)(x - a43)(x - a50)(x - a54) - where a is a primitive element of GF(26).
dds17ltd19. - We (1986) considered, G(x) xt1 Vtxt Vx
1, Subfield subcodes, - where L ? GF(t2), V ? GF(t2)\1 , n t2 - t -
1. - k t2 - t - 1 - 2l(t - 3/2 ), where t2l . ,
dds2t3. - M. Loeloeian and J. Conan (1987), G(x) xt x,
- where L ? GF(t2) and n t2 - t. k t2 - t -
2l(t - 3/2 ) - 1, dds2t1. - A.M.Roseiro, J.I.Hall, J.E.Adney and M.Siegel
(1992) - By representation Gt(x) G(x) mod (xt2 x), k
t2 - t - 2l(t - 3/2) - 1, dds2t1. - We described(1995) G(x) xt-1 1, k t2 - t -
2l(t - 3/2 ), and we have proved that d2t-1.
6Background
- P. Veron (2001) G(x) xt x - Quadratic trace
Goppa codes. - k t2 - t - 2l(t - 3/2 ) - 1, d2t4
- P. Veron (2005) G(x) xt1VtxtVx1.
- k t2 - t - 1 - 2l(t - 3/2)
- and G(x) xt-1 1 , k t2 - t 1- 2l(t - 3/2) -1
- We (1995), P. Veron(1998), G. Bommer and F.
Blanchet (2000) - all the forementioned codes are
quasi-cyclic binary Goppa codes.
7- Two classes of quasi-cyclic Goppa codes ?(LG(x))
and ?(LG(x)), where - G(x) xt-1 1
- nt2-t1, k t2 - t - 2l(t -3/2), d dds2t - 1
- G(x) xt1 1
- nt2-t-1, k t2 - t - 2l(t -3/2)-1, d dds2t
3 -
8CODEWORD STRUCTURE OF THE BINARY ?(LG(x)) CODE
- It is easy to show that ?(LG(x)) code is the
quasi-cyclic code with the length of cycloid (t
-1) and number of cycloids t. - The codewords of this code have one fixed
position 0. - The total length of the code is
- n t(t - 1) 1
9- The numerators of the codewords of the ?(LG(x))
code can be represented in the following form - L ßi, ßi at1 ,, ßi a(t1)(t-2) i1,.. t
U0 - where ß at-1 ,
- a is the primitive element of GF(22l),
- and ßi, ßi at1 ,, ßi a(t1)(t-2) are
numerators of positions that form the
correspondent cycloids.
10Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
11Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
12- ?1(L1G(x)) code obtained as trancated ?(LG(x))
code by information position 0, i.e., we remove
all codewords with 1 on position 0 from
?(LG(x)) code. - Then L1 L\0 and ?1(L1G(x)) code is still
quasi-cyclic code
13Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
14- It is possible to transform(Lemma 1) parity check
matrix of the code ?1(L1G(x)) to the a parity
check matrix of the code ?2(L2G2(x)) where G2(x)
xt x , L2 L1. - This code still quasi-cyclic with the length of
cycloid t -1 and the number of cycloids is t, - n2 t(t - 1).
15Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
16- Let us consider now the following substitution x
-gt z ? , and ? t ? 1 0, ??GF(t2). - Then G2(x) xt x zt ? t z ? zt z
1 G3(z).
17Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
18- The code ?3(L3G3(x)) has parameters
- n3 t(t - 1)
- k3 k2 k1 1
- d3 2t 4
19- Let us consider now ?3(L3 G3(x)) code obtained
from ?3(L3 G3(x))-code by trancation on position
0, i.e., L3 L3\0 - This code has parameters
- n3 n3 - 1
- k3 k3 k2 k1 - 1
- d3 d3 - 1 d2 - 1 2t 3
20Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
21- Now let us use the following substitution
- z -gt y -1 . Then
- G3(z) zt z 1 y-t y-1 1 -gt
- G4(y) yt yt-1 1.
- Code ?4(L4G4(x)) has parameters
- n4 n3 n3 - 1
- k4 k3
- d4 d3 - 1
22Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
23- Lemma 4
- Code ?4 (L4 G4(x)) ?5(L5 G5(x)) where
G5(y) yG4(y) yt1yty and L5 L4 .
24Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
25- Let us use the following substitution
- y -gt u 1 then
- G5(y) yt1 yt y -gt (u 1)t1 (u 1)t
u ut1 1 G6(u)G(u).
26- ?(LG(x)) codes have the following parameters
- n n4 n3 -1 t(t - 1) - 1
- k k4 k3 k - 1
- Theorem 1
- The minimal distance of ?(LG(x)) code is
- d 2t 3
- Theorem 2
- The minimal distance of ?2(L2G2(x)) code is
- d2 2t 4 and number of information symbols is
k2 k1 - 1. - d2 d3 d3 1 d 12t 4
27Codes parameters
code code length code dimension minimal distance
G (x) xt-1 1 t2 t1 t2 t-2l(t-3/2) (P. Veron, 2005) 2t-1
G2(x)xt x t2 t t2 t-1-2l(t-3/2) (P.Veron,2001) 2t4
G (x) xt1 1 t2 t-1 t2 t-1-2l(t-3/2) (P. Veron, 2005) 2t3
G4(x)xt xt-1 1 t2 t (t2 t-1) t2 t-1-2l(t-3/2) 2t3
28- THANK YOU
- FOR YOUR ATTENTION!
29Code chain
Codes with odd minimal weight
Codes with even weight
G (x) xt-1 1
n22l-t1
G4(x) xt xt-1 1
G2(x) xt x L 2 L\0
n22l-t
n22l-t-1
G2(x) xt x L2 L2\a
G(x) xt1 1