Relation between Two Classes of Binary Quasi-Cyclic Goppa Codes - PowerPoint PPT Presentation

About This Presentation
Title:

Relation between Two Classes of Binary Quasi-Cyclic Goppa Codes

Description:

truncate. Theorem 2 (d2=2t 4) Substitution x- x ? , ?t ? 1 =0, ?GF(t2) truncate. Lemma 3. Substitution x - x-1. Lemma 4. Substitution x - x 1. Theorem 1 (d2=2t 3) ... – PowerPoint PPT presentation

Number of Views:148
Avg rating:3.0/5.0
Slides: 30
Provided by: ser8175
Category:

less

Transcript and Presenter's Notes

Title: Relation between Two Classes of Binary Quasi-Cyclic Goppa Codes


1
Relation between Two Classes of Binary
Quasi-Cyclic Goppa Codes Sergey Bezzateev and
Natalia Shekhunova Saint Petersburg State
University of Airspace Instrumentation Saint-Peter
sburg, Russia e-mail bsv_at_aanet.ru, sna_at_delfa.net
2
Binary Goppa codes
  • A binary vector a(a1,an) of length n is a
    codeword of the ?(L,G) Goppa code if and only if

G(x)- Goppa polynomial, L- locator set.
Parameters of binary Goppa codes Code length n
2m Code dimension kn-mdegG(x) Minimal
distance ddegG(x)1dds.
3
Separable Binary Goppa codes
  • G(x) is separable polynomial
  • Minimal distance for separable binary Goppa codes
  • d 2degG(x)1dds

4
Main questions
  • To find codes with
  • Improved estimations of parameters dimension and
    minimal distance
  • Good parameters (VG bound)
  • Special structure (large permutation group,
    quasi-cyclic, etc.)
  • ddds
  • The binary separable codes with the location set
    L from GF(22l) are of the greatest interest

5
Background
  • M. Loeloeian and J. Conan (1984) presented
    (55,16,19) Goppa code
  • G(x) (x -a9)(x - a12)(x - a30)(x - a34)(x -
    a42)(x - a43)(x - a50)(x - a54)
  • where a is a primitive element of GF(26).
    dds17ltd19.
  • We (1986) considered, G(x) xt1 Vtxt Vx
    1, Subfield subcodes,
  • where L ? GF(t2), V ? GF(t2)\1 , n t2 - t -
    1.
  • k t2 - t - 1 - 2l(t - 3/2 ), where t2l . ,
    dds2t3.
  • M. Loeloeian and J. Conan (1987), G(x) xt x,
  • where L ? GF(t2) and n t2 - t. k t2 - t -
    2l(t - 3/2 ) - 1, dds2t1.
  • A.M.Roseiro, J.I.Hall, J.E.Adney and M.Siegel
    (1992)
  • By representation Gt(x) G(x) mod (xt2 x), k
    t2 - t - 2l(t - 3/2) - 1, dds2t1.
  • We described(1995) G(x) xt-1 1, k t2 - t -
    2l(t - 3/2 ), and we have proved that d2t-1.

6
Background
  • P. Veron (2001) G(x) xt x - Quadratic trace
    Goppa codes.
  • k t2 - t - 2l(t - 3/2 ) - 1, d2t4
  • P. Veron (2005) G(x) xt1VtxtVx1.
  • k t2 - t - 1 - 2l(t - 3/2)
  • and G(x) xt-1 1 , k t2 - t 1- 2l(t - 3/2) -1
  • We (1995), P. Veron(1998), G. Bommer and F.
    Blanchet (2000) - all the forementioned codes are
    quasi-cyclic binary Goppa codes.

7
  • Two classes of quasi-cyclic Goppa codes ?(LG(x))
    and ?(LG(x)), where
  • G(x) xt-1 1
  • nt2-t1, k t2 - t - 2l(t -3/2), d dds2t - 1
  • G(x) xt1 1
  • nt2-t-1, k t2 - t - 2l(t -3/2)-1, d dds2t
    3

8
CODEWORD STRUCTURE OF THE BINARY ?(LG(x)) CODE
  • It is easy to show that ?(LG(x)) code is the
    quasi-cyclic code with the length of cycloid (t
    -1) and number of cycloids t.
  • The codewords of this code have one fixed
    position 0.
  • The total length of the code is
  • n t(t - 1) 1

9
  • The numerators of the codewords of the ?(LG(x))
    code can be represented in the following form
  • L ßi, ßi at1 ,, ßi a(t1)(t-2) i1,.. t
    U0
  • where ß at-1 ,
  • a is the primitive element of GF(22l),
  • and ßi, ßi at1 ,, ßi a(t1)(t-2) are
    numerators of positions that form the
    correspondent cycloids.

10
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
11
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
12
  • ?1(L1G(x)) code obtained as trancated ?(LG(x))
    code by information position 0, i.e., we remove
    all codewords with 1 on position 0 from
    ?(LG(x)) code.
  • Then L1 L\0 and ?1(L1G(x)) code is still
    quasi-cyclic code

13
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
14
  • It is possible to transform(Lemma 1) parity check
    matrix of the code ?1(L1G(x)) to the a parity
    check matrix of the code ?2(L2G2(x)) where G2(x)
    xt x , L2 L1.
  • This code still quasi-cyclic with the length of
    cycloid t -1 and the number of cycloids is t,
  • n2 t(t - 1).

15
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
16
  • Let us consider now the following substitution x
    -gt z ? , and ? t ? 1 0, ??GF(t2).
  • Then G2(x) xt x zt ? t z ? zt z
    1 G3(z).

17
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
18
  • The code ?3(L3G3(x)) has parameters
  • n3 t(t - 1)
  • k3 k2 k1 1
  • d3 2t 4

19
  • Let us consider now ?3(L3 G3(x)) code obtained
    from ?3(L3 G3(x))-code by trancation on position
    0, i.e., L3 L3\0
  • This code has parameters
  • n3 n3 - 1
  • k3 k3 k2 k1 - 1
  • d3 d3 - 1 d2 - 1 2t 3

20
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
21
  • Now let us use the following substitution
  • z -gt y -1 . Then
  • G3(z) zt z 1 y-t y-1 1 -gt
  • G4(y) yt yt-1 1.
  • Code ?4(L4G4(x)) has parameters
  • n4 n3 n3 - 1
  • k4 k3
  • d4 d3 - 1

22
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
23
  • Lemma 4
  • Code ?4 (L4 G4(x)) ?5(L5 G5(x)) where
    G5(y) yG4(y) yt1yty and L5 L4 .

24
Transformation from ?(LG(x)) to ?(LG(x))
G(x) xt-1 1
truncate
G1(x) G (x), L1 L\0
Lemma1
G2(x) xG1(x), L2 L1
Theorem 2 (d22t4)
Substitution x-gt x? , ?t ? 1 0, ??GF(t2)
G3(x) xt x1, L3
truncate
G3(x) xt x1, L3 L3 \0
Lemma 3
Substitution x -gt x-1
G4(x) xt xt-1 1, L4
Lemma 4
G5(x) xG4(x), L5 L4
Substitution x -gt x1
G6(x) xt1 1, L6
Theorem 1 (d22t3)
G(x) xt1 1
25
  • Let us use the following substitution
  • y -gt u 1 then
  • G5(y) yt1 yt y -gt (u 1)t1 (u 1)t
    u ut1 1 G6(u)G(u).

26
  • ?(LG(x)) codes have the following parameters
  • n n4 n3 -1 t(t - 1) - 1
  • k k4 k3 k - 1
  • Theorem 1
  • The minimal distance of ?(LG(x)) code is
  • d 2t 3
  • Theorem 2
  • The minimal distance of ?2(L2G2(x)) code is
  • d2 2t 4 and number of information symbols is
    k2 k1 - 1.
  • d2 d3 d3 1 d 12t 4

27
Codes parameters
code code length code dimension minimal distance
G (x) xt-1 1 t2 t1 t2 t-2l(t-3/2) (P. Veron, 2005) 2t-1
G2(x)xt x t2 t t2 t-1-2l(t-3/2) (P.Veron,2001) 2t4
G (x) xt1 1 t2 t-1 t2 t-1-2l(t-3/2) (P. Veron, 2005) 2t3
G4(x)xt xt-1 1 t2 t (t2 t-1) t2 t-1-2l(t-3/2) 2t3
28
  • THANK YOU
  • FOR YOUR ATTENTION!

29
Code chain
Codes with odd minimal weight
Codes with even weight
G (x) xt-1 1
n22l-t1
G4(x) xt xt-1 1
G2(x) xt x L 2 L\0
n22l-t
n22l-t-1
G2(x) xt x L2 L2\a
G(x) xt1 1
Write a Comment
User Comments (0)
About PowerShow.com