Title: MystiQ
1MystiQ
Nilesh Dalvi, Brian Harris, Chris Re, Dan Suciu
University of Washington
2Outline
- Overview
- Demo / discussions
- Conclusions
3MystiQ
- General purpose probabilistic database system
- Motivation manage imprecisions in data
4What MystiQ Does
- Tables stored in relational database
- Tables ? Events ( Probabilistic tables)
- Expressive probabilistic model
- Maybe/Or tuples
- Views over events
- Confidences for views
5What MystiQ Does
- Query semantics
- SQL joins, distinct, aggregates/group-by
- Point probabilities
- Top-k answers, guaranteed ranking
- Query evaluation
- Safe plans
- Monte Carlo simulation (Luby-Karp)
6What MystiQ Does Not
- No syntax for popular probabilistic models
- BNs, PRMs, rules with confidences
- Can be expressed but indirectly
- No lineage
- No probabilities on continuous values
7Using MystiQ
- Store data in RDBMS (demo postgres)
- Write a configuration file
- Run SQL queries on MystiQ
8Probabilistic Tables Events
Product(prod,price,color,shape,prob)
ProductEvent(prod,price,color,shape)
9Configuration File
- Tables ? Events ( Probabilistic tables)
CREATE TABLE Product(prod, color, shape,
prob) CREATE EVENT ProductEvent(prod)
choice(color, shape)
ON Product(prob)
10Demo
11Views
later
- StandardTables ? Tables ( ? Events )
- ProbabilisticEvents ? Events
12A BN in MystiQ
Color
Shape
Weight
13Applying BN to a Table
Product(prod,price,color,shape,prob)
ProductEvent(prod,price,color,shape)
14Applications of ProbDB ?
- Fuzzy object matching IMDB AMZN
- Information extraction
- What else ???
15Development
- Developed under a TGIF grant
- Free license (on request) for research
institutions
16Current/Future Work
- Constraint, Data mappings
- Theory of conjunctive queries on probdb
- Cleaning of sensor data (w/ Balazinska)