Title: Member:Lam King Ho 98003010
1Educational Communication and Technology
(EDD5161A) PowerPoint Presentation Topic
Concept and Graphical Representation of Functions
- Group 21
- Member Lam King Ho (98003010)
- Lau Shu Fat (98003430)
- Li Chi Chung (98002690)
- Lam Wing Yin (98002850)
- Poon Hing Sheng (98249700)
GO
2- Concept of function
- Trigonometric function
- Logarithmic function
- Quadratic function
- Design Objectives
- Enhance students interest in understanding
concept of functions and graphical representation
of functions - Provide a time-saving package for student/teacher
in drawing graphs of different functions - Enable a quick understanding of graphical
variations upon changes of the coefficients - Applicable to varies level of students ( Form 3
to 5)
3- Guidelines to use
- Designed for students to use before or after the
class but NOT in the class - Designed as assisting program besides the
classroom teaching - Target Student
- Age Form two to Form four
- Ability Band 3
- Attitude self-motivated, eager to learn
- Authors part of design
-
- Concept of function ( Lam king ho Poon hing
sheng ) - Trigonometric function ( Li chi chung Lau shu
fat ) - Logarithmic function ( Lam wing yin Lam king ho
) - Quadratic function ( Lau shu fat Lam king ho )
4contents
Quadratic
Function
Log
Trigonometric
5Function
...
What is it ??
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13Function f(x)x5
1
6
14Function f(x)x5
-3
2
15Function f(x)x5
4/9
49/9
16Mathematical Presentation
Go
17Let f(x) x 5 when x 1 , ?f(1) 1 5
6
18Let f(x) x 5 when x -3, ?f(-3) -3 5
2
19Let f(x) x 5 find f(4/9).
20Quadratic function
Quadratic function
y ax2 bx c
Go
21Use this to plot the following graphs
Then comparing their shapes
y x2 y -x2
y x2 - x - 6 y -x2 - x - 6
y 2x2 - x 5 y -2x2 - x 5
22y ax2 bx c
Eg.1
For a gt 0
Curve open upwards
23y ax2 bx c
For a gt 0
Curve open upwards
Eg.2
24y ax2 bx c
For a gt 0
Curve open upwards
25y ax2 bx c
For a lt 0
Curve open downwards
Eg.1
26y ax2 bx c
For a lt 0
Curve open downwards
Eg.2
27y ax2 bx c
For a lt 0
Curve open downwards
28y ax2 bx c
For c gt 0
y-intercept is positive
Eg.1
29y ax2 bx c
For c gt 0
(0, c)
y-intercept is positive
Eg.2
30y ax2 bx c
For c gt 0
(0, c)
(0, c)
y-intercept is positive
31y ax2 bx c
Eg.1
For c lt 0
y-intercept is negative
32Eg.2
y ax2 bx c
(0, c)
For c lt 0
y-intercept is negative
33(0, c)
y ax2 bx c
(0, c)
For c lt 0
y-intercept is negative
34y ax2 bx c
Eg.1
For c 0
35y ax2 bx c
For c 0
Eg.2
36y ax2 bx c
For c 0
37Exercise
Click the corrected answer
y ax2 bx c
38Congratulation
39Sorry, you are wrong!!
Try again..
40Trigonometric
Trigonometric
y sinx, y cosx, y tanx
Go
41Use this to plot the following graphs
Then comparing their shapes
1. sinx
2. cosx
3. tanx
421. y sin(x)
Eg.1
2. y sin(2x)
431. y sin(x)
Eg.2
2. y sin(2x)
441. y sin(x)
2. y sin(2x)
451. y cos(x)
Eg.1
2. y cos(2x)
461. y cos(x)
Eg.2
2. y cos(2x)
471. y cos(x)
2. y cos(2x)
481. y tan(x)
Eg.1
2. y tan(2x)
x
491. y tan(x)
Eg.2
2. y tan(2x)
x
501. y tan(x)
2. y tan(2x)
x
51Exercise
Match the corrected order
Sin ,Cos, Tan
y
x
52Common Logarithms
Go
53Meaning of Common Logarithm
54- Using the graph of log y x to find
- the value of the following
a) log 2 ( )
0.3
b) log 5 ( )
0.7
c) log 10 ( )
1
55Exercise
For y 10x
When x 0.85, value of y is