Exponential and Logarithmic Functions - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Exponential and Logarithmic Functions

Description:

Properties of Logarithms. logb (ac) = logb a logb c. logb (a/c) = logb a - logb c ... Properties of Exponentials and Logarithms. y = logax ay = x. ay = x y ... – PowerPoint PPT presentation

Number of Views:4201
Avg rating:3.0/5.0
Slides: 17
Provided by: isabellebi
Category:

less

Transcript and Presenter's Notes

Title: Exponential and Logarithmic Functions


1
Exponential and Logarithmic Functions
2
Learning Objectives
  • Exponential functions.
  • Properties of exponentials.
  • Logarithmic functions.
  • Properties of logarithms.
  • Exponential and logarithmic equations.
  • Applications.

3
Exponential Functions
  • Exponential function an exponential function is
    of the form f(x) bx where bgt0, b ? 1, and x is
    any real number.
  • Domain R.
  • Range (0, ?).
  • Euler number e 2.71828 is the base of the
    natural exponential function ex.
  • Growth function bx where b gt 1.
  • Decay function bx where 0 lt b lt 1.

4
Exponential Functions
5
Exponential Functions
  • Example f(x) -2 . 3x1 .

6
Properties of Exponentials
  • For a,b gt0, b ? 1 an bn ? a b
  • an am ? n m
  • The exponential is a one-to-one function.

7
Logarithmic Functions
  • Logarithmic function the logarithmic function is
    the inverse of the exponential function.
  • Logarithmic function of base b f(x) logbx ,
    for b ? 1.
  • f(x) logbx ? f-1(x) bx where b ? 1, and x is
    any real number.
  • a logbc ? ba c, where b ? 1.
  • Domain (0, ?) (the range of exp).
  • Range R (the domain of exp).

8
Logarithmic Functions
  • General log the general log is logbx . In
    Maple logb(x).
  • Common log the common log is log10x, or log
    x.In Maple log10(x), log10(x).
  • Natural log the general log is logex ln x.In
    Maple ln(x), logexp(1)(x).

9
Logarithmic Functions
10
Logarithmic Functions
11
Logarithmic Functions
  • Example f(x) -2 . log3(x1) .

12
Properties of Logarithms
  • For a,b gt0, b ? 1 logax logbx ? a b
  • logan logam ? n m
  • The logarithm is a one-to-one function. logbbx
    x
  • b logb x x
  • logb1 0
  • logbx ln(x) / ln(b)

13
Properties of Logarithms
  • logb (ac) logb a logb c
  • logb (a/c) logb a - logb c
  • logb (ac) c logb a
  • logb (a) logc a / logc b

14
Properties of Exponentials and Logarithms
  • y logax ? ay x
  • ay x ? y logax
  • ax ex ln a

15
Exponential and Logarithmic Equations
  • Solve 85x1 182x-3 e ln (8) (5x1) eln(18)
    (2x-3)
  • ln(8) (5x1) ln(18) (2x-3)x (5ln8 2ln18)
    -3ln18 ln8)x - (3ln18 ln8) / (5ln8
    2ln18)

16
Exponential and Logarithmic Equations
  • Solve log2 8 log2 9 logx 3 log2 (8 . 9)
    logx 3
  • ln (72) / ln 2 ln3 / ln x
  • ln x ln 3 . ln 2 / ln 72x e (ln 3 . ln 2
    / ln 72) 3 ln 2 / ln 2.36 3 ln 2 / ln
    2.2.2.3.3
Write a Comment
User Comments (0)
About PowerShow.com