QUANTUM PROBABILITIES a novel derivation of the probability postulate - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

QUANTUM PROBABILITIES a novel derivation of the probability postulate

Description:

... measurement M, on a state ? it collapses into an eigenstate of M, F, with probability | F| ? |2. ... Can not use a vector ie ?S. Need to allow for pure or ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 15
Provided by: Phys174
Category:

less

Transcript and Presenter's Notes

Title: QUANTUM PROBABILITIES a novel derivation of the probability postulate


1
QUANTUM PROBABILITIESa novel derivation of the
probability postulate
  • Jason Doukas
  • Goss Seminar
  • 27/May/2005

2
Standard Quantum Probability Postulate
  • BORNS RULE
  • When we perform a measurement M, on a state ?
    it collapses into an eigenstate of M, F, with
    probability ltF ?gt2.

3
New philosophy
4
Notation states(?SE)
  • Can not use a vector ie ?S
  • Need to allow for pure or mixed states.
  • Can not use density matrix

5
EnvarianceW. H. Zurek, Phys. Rev. Lett. 90,
120404 (2003)
  • H S?E
  • S System
  • E Environment
  • Environment Assisted Invariance
    UE(US ?SE)
    ?SE

6
What does envariance tell us?
  • Theorem
  • If
  • UE(US?SE) ?SE
  • then the StateS(?SE) is unchanged by US.
  • Proof
  • StateS(?SE) StateS(UE(US?SE) ) by envariance
  • StateS(US?SE)

7
Schmidt decomposition?SE gt ?0s0gte0gt
?1s1gte1gt
  • If ?0 ? ?1 then Us ei?k, Ue e-i?k
  • Ue Us ?segt ?0 ei?0 e-i?0 s0gte0gt ?1 ei?1
    e-i?1 s1gte1gt
  • ?segt
  • Hence, state of S is independent of phases!

8
What is the state of S?
  • The state of S can not be a pure state
  • StateS (?segt) ?sgt
  • as0gt ßs1gt
  • ? as0gt - ßs1gt
  • ? ?sgt
  • Therefore state of S is a mixed state!
  • Ie 20 in s0gt and
  • 80 in s1gt (or - s1gt doesnt
    matter!)

9
Equal coefficient state
  • ?segt (s0e0gt s1e1gt),
  • Consider the swaps
  • US s0gt ? s1gt
  • UE e0gt ? e1gt
  • For equal coefficients swaps are envariant.
  • ? StateS(?se) is independent of swaps of the
    sigt states.

10
Procedure
  • Take an ensemble of ?segt and measure S and E for
    each

11
  • Experimentally Pr favourable outcomes/N
  • Note Perfect correlation implies
  • Pr (sigt) Pr (eigt)

12
Borns Rule
  • ?segt (s0e0gt s1e1gt)
  • Us ?segt (s1e0gt s0e1gt)
  • UE Us ?segt (s1e1gt s0e0gt)
  • Pr (s1gt ?segt) Pr (e1gt ?segt)
  • Pr (e1gt Us ?segt)
  • Pr (s0gt Us ?segt)
  • Pr (s0gt UE Us ?segt)
  • Pr (s0gt ?segt)
  • Pr(s0gt) Pr(s1gt)
  • This is Borns rule!

13
Unequal coefficients example
  • ?segt (v2s0e0gt s1e1gt)
  • Step 1 Remote environment
  • e0gt e0e0gt
  • e1gt e1e0gt
  • ?segt ? v2s0e0e0gt s1e1e0gt

14
  • Step 2 fine-graining
  • Let e0gt (e2gt e3gt) then
  • ?segt ? v2s0e0e0gt s1e1e0gt
  • ? s0e2e0gt s0e3e0gt s1e1e0gt
  • Equal coefficient but no entanglement

15
  • Step 3 Control-shift operator,
  • Ce eie0gt? eieigt
  • Ce?segt ? s0e2gte2gt s0e3gte3gt s1e1gte1gt
  • Equal coefficient form
  • Pr(s0e2 gt) Pr(s0e3 gt) Pr(s1e1 gt) 1/3
  • So,
  • Pr(s0gt) 2/3
  • Pr(s1gt) 1/3
  • Thus, we have shown Borns rule.

16
Conclusions
  • Results completely generalise.
  • The amplitude2 is shown to be equal to the
    probability.
  • Many worlds
  • Usually rejected because it can not explain
    probabilities.
  • We might still exist in many worlds after all?
Write a Comment
User Comments (0)
About PowerShow.com