MODELING SHOULDER STRENGTH USING A SUPPORT VECTOR MACHINE - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

MODELING SHOULDER STRENGTH USING A SUPPORT VECTOR MACHINE

Description:

To develop a metric of shoulder function that represents a continuum ... Shawn O'Driscoll, M.D., Ph.D. Mike Rock, M.D. Kai-Nan An, Ph.D. Marj Johnson, P.T. ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 21
Provided by: drrichar2
Category:

less

Transcript and Presenter's Notes

Title: MODELING SHOULDER STRENGTH USING A SUPPORT VECTOR MACHINE


1
MODELING SHOULDER STRENGTH USING A SUPPORT VECTOR
MACHINE
  • Richard E. Hughes, Ph.D.
  • Orthopaedic Surgery

2
OBJECTIVES
  • To develop a metric of shoulder function that
    represents a continuum from pathologic to healthy
  • To develop a strength-based test for rotator cuff
    tears that is superior to MRI or ultrasound

3
ISOMETRIC ER STRENGTH
4
NORMATIVE SHOULDER STRENGTH
  • Healthy volunteers (n120)
  • Age 20-78 years
  • Dominant and non-dominant sides
  • Isometric strength
  • Abduction/adduction
  • Internal/external rotation
  • Flexion/extension

Hughes, R.E. et al. (1999) AJSM 27651-657
5
ROTATOR CUFF TEAR (RCT) PATIENT STRENGTH
  • Same protocol as normative data
  • Full-thickness RCT
  • Measurements
  • Pre-op
  • 6 months post-op
  • 12 months post-op
  • Intraoperative tear size measurement
  • n37

6
METHODS
  • Use isometric shoulder strength measurements for
    asymptomatic shoulders and symptomatic cuff tear
    shoulders
  • Model data using a least-squares support vector
    machine (SVM)

7
2D EXAMPLE
x(x1, x2)
x2
EXTERNAL ROTATION STRENGTH (Nm) _at_ NEUTRAL
x1
ABDUCTION STRENGTH (Nm) _at_ 0o ABDUCTION
8
STRENGTH DATA
  • Abduction _at_ 30o, 60o, 90o
  • Adduction_at_ 30o, 60o, 90o
  • External rotation
  • 30o IR and 15o abduction
  • 0o IR and 90o abduction
  • 0o IR and 15o abduction
  • 30o ER and 90o abduction
  • Internal rotation
  • 0o IR and 15o abduction
  • 30o ER and 90o abduction
  • 30o ER and 15o abduction
  • 60o ER and 90o abduction

9
STRENGTH DATA
x1, x2, x3
  • Abduction _at_ 30o, 60o, 90o
  • Adduction _at_ 30o, 60o, 90o
  • External rotation
  • 30o IR and 15o abduction
  • 0o IR and 90o abduction
  • 0o IR and 15o abduction
  • 30o ER and 90o abduction
  • Internal rotation
  • 0o IR and 15o abduction
  • 30o ER and 90o abduction
  • 30o ER and 15o abduction
  • 60o ER and 90o abduction

x4, x5, x6
x7
x8
x9
x(x1 , , x14)
x10
x11
x12
x13
x14
10
SVM MODEL
(no tear data points)
(tear data points)
11
SVM ADVANTAGES
  • Can model highly nonlinear relationships in high
    dimensional spaces
  • More intuitive than competing machine learning
    methods (i.e. artificial neural networks)
  • Very computationally efficient
  • Can rigorously represent expert knowledge in
    model formulation

12
SVM APPLICATIONS IN MEDICINE
  • Breast tumor identification from ultrasound
    images
  • Microarray gene expression classification
  • Nosocomial infection detection
  • Bioinformatics
  • EEG analysis

13
SVM MODELING STEPS
  • Identify and prepare data set
  • Predict healthy shoulder strength from regression
    models (gender, age, body mass)
  • Train SVM
  • Test (evaluate) SVM performance

14
ROC CURVE
15
ROC RESULTS
16
SHOULDER METRIC
(no tear data points)
Distance from hyperplane
(tear data points)
17
RESULTS
18
DISCUSSION
  • Developed a simple unifying metric for healthy
    shoulder strength based on healthy-pathologic
    continuum
  • Exceeded some but not all US studies of detecting
    cuff tears
  • Did not exceed diagnostic ability of MRI to
    detect cuff tears

19
LIMITATIONS
  • Asymptomatic people assumed to represent intact
    rotator cuff case
  • Data based on Mayo Clinic data normative data
    from rural Minnesota volunteers
  • Did not use separate training and testing data
    sets for evaluation

20
ACKNOWLEDGEMENTS
  • Aaron Silver
  • Matt Lungren
  • Oleg Svintsitski
  • Shawn ODriscoll, M.D., Ph.D.
  • Mike Rock, M.D.
  • Kai-Nan An, Ph.D.
  • Marj Johnson, P.T.
Write a Comment
User Comments (0)
About PowerShow.com