Title: Astrophysics of high energy cosmicrays
1Astrophysics of high energy cosmic-rays
- Eli Waxman
- Weizmann Institute, ISRAEL
New Physics talk by M. Drees
Bhattacharjee Sigl 2000
2Cosmic ray flux and Composition
log dJ/dE
E-2.7
Galactic
Protons
E-3
X-Galactic
Heavy Nuclei
Galactic plane enhancement
Light Nuclei (p?)
Isotropy
1
106
1010
E GeV
Ucr(1GeV)1 eV/cm3
Blandford Eichler, Phys. Rep. 87 Axford, ApJS
94 Nagano Watson, Rev. Mod. Phys. 00
3Challenge I Acceleration
v
R
B
v
4Brightest known sources
- AGN jets (steady)
- G few requires L1047 erg/s
- Few, brightest AGN
- GRBs (transient)
- G 300 requires L1051 erg/s
- Average Lg1052 erg/s
Srittmatter 82 Biermann Strittmatter 87
Waxman 95 Vietri 95 Milgrom Usov 95
5The Suspects
losses
1/b
Hillas 84 Arisaka 02
6Comments on Magnetars
- Newborn Neutron stars
- (Hypothesis) with B1014G, W104/sec
- LEM1050
erg/s for t -
- Some difficulties
-
- Wind should penetrate envelope
- with
-
- Acceleration mechanism
Unknown
e.g. Blasi, Epstein, Olinto 00 Arons 02
EM wind
NS
1 Msun envelope
7Challenge II Propagation (GZK)
g
p(p0)
CMB
n (p)
p
1000
100
10
0.5
1.0
3.0
Greisen 66 Zatsepin Kuzmin 66
8Model
Waxman 95
- Flys Eye fit for Galactic heavy (
- JGE-3.50
- X-Galactic protons
- Generation spectrum (shock
acceleration) - Generation rate (GRB motivated)
-
- Redshift evolution SFR (GRB
motivated).
9The Data
10Data- Calibrated at 1019eV
11Model vs. Data
Bahcall Waxman 02
X-G Model
Ruled out 7s
5s
12Conclusions are Robust
13Data/Model consistency
- Yakutsk, Flys Eye, HiRes Consistent with
- XG protons
GZK - AGASA (25 of total exposure)
- Consistent below 1020eV
- Excess above 1020eV 2.2/-0.8 8
observed - New source/New physics/ 25 energy
- Local inhomogeneity
over-estimate - Need Large, hybrid 1018eV to 1020eV detector
(Auger)
?
14The Auger Observatory 103.5 km2
Cronin 92, Watson 93
15Gamma-ray Bursts
M on 1 Solar Mass BH
Relativistic Outflow
G300
e- acceleration in Collisionless shocks
e- Synchrotron MeV gs Lg1052erg/s
Meszaros, ARAA 02
16Proton/electron acceleration
Waxman 95
- Protons
- Acceleration
-
- Particle spectrum
- p energy production
- Electrons
- MeV gs
-
- g spectrum
- g energy production
Frail et al. 01 Schmidt 01
17GZK Sources
- AGN, Radio-galaxies ?
- GRBs ?
- For RGRB(z0)0.5/Gpc3yr
- Prediction
g
Waxman 95, 01
p
Schmidt 01
D
lB
Miralda-Escude Waxman 96
18GRBs An illustrative example
Miralda-Escude Waxman 96
19GRB Model Predictions
- Homogeneous GZK
-
- 3x1020eV
- Few, narrow spectrum sources
- Fluctuations (no homogeneous GZK)
-
- For more
- Lec. Notes Phys. review
(astro-ph/0103186)
20Standard Model GRB ns
-
-
-
-
- Weak dependence on model parameters
Waxman Bahcall 97, 99
Rachen Meszaros 98 Guetta, Spada Waxman 01
21Diffuse n Flux Bound
- Observed JCR(1019eV)
- pg losses on CMB z
- For Sources with tgp
- Strongest know z evolution (QSO, SFR)
Waxman Bahcall 99, Bahcall Waxman 01
22tgp for known sources
eg
p
e
n
e-
eg
ep
23Anita (Radio, Balloon)
Antares (0.1 Gton)
Nemo (1 Gton)
24The AMANDA South-pole experiment
25AMANDA neutrino event
Andres et al., Nature 01
26The Mediterranean ANTARES experiment
27Summary
- Yakutsk, Flys Eye, HiRes Consistent with GZK
- AGASA 1020eV excess
- Main Challenge Astrophysical accelerator
physics - Candidate GRBs
-
- Hybrid, 103.5km2 Auger
- GZK spectrum Constraints on astro.
sources - UHE CRs High energy n sources
- 1--103TeV 1 km3 (Optical Cerenkov)
detectors - Amanda, Antares,
Nestor, IceCube, Nemo - 103TeV 1 km3 (Radio Cerenkov)
detectors - Anita, Rice
28n telescopes some prospects
- GRB n detection
- nm nt t appearance
- Lorentz Inv. (1-v/c 10-16),
- Weak equivalence principle
(FL/c3 10-6) -