Title: Temporal Graph Plan
1The Logic of ReachabilityDavid E. SmithAri K.
Jónsson
2Apologies
No results ideas formalism Adverse
reactions Logic
3Outline
Background Motivation Simple Reachability Mutual
Exclusion Practical Matters
4Graphplan
5Graphplan
Reachability! (optimistic achivability)
6Mutual Exclusion
- Two actions are mutex if
- one clobbers the others effects or
preconditions - they have mutex preconditions
-
- Two propositions are mutex if
- all ways of achieving them are mutex
7Why Reachability?
Pruning reachable ? achievable Guidance distance
8TGP
Actions Real duration Concurrent
Heater
Thrust
closevalve
comlink
9TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
pre1
pre2
A
eff1
eff2
10TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
pre2
cond3
A
Conservative!
11TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
A
eff
12TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
Inititial Conditions
t0
At(Pkg1, BOS-PO)
At(Truck1, BOS)
13Impact?
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
t0600z
t1300z
Closed(SJC)
14Monotonicity of Reachability
0
1
2
3
x p q x
x p q x
x p q x r
A
A
A
B
B
B
x
C
Propositions actions monotonically increase
15Monotonicity of Mutex
0
1
2
3
x p q x
x p q x
x p q x r
A
A
A
B
B
B
x
C
Mutex relationships monotonically decrease
16Cyclic Plan Graph
Propositions
Actions
x1 p1 q1 x0 r3
A0 B0 C2
Earliest start times
17Cyclic Plan Graph
Propositions
Actions
x1 p1 q1 x0 r3
A0 B0 C2
Earliest end time
2
2
18Impact?
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
t0600z
t1300z
Closed(SJC)
19Windows of Reachability
Actions
Propositions
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
20Windows of Mutex
Actions
Propositions
3,4x11,?
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
0,3x11,?
0,3x3,4
21Action Model
cond1
Duration Parallel (pre) Conditions over intervals
Effects over intervals
cond2
cond3
A
eff
A
5A
5A
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
A
r
r
e
22Semantics
P stops holding
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
A
r
r
e
23Semantics
p stops holding
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
???
A
???
r
r
???
e
???
Incomplete
24Exogenous Conditions
Inititial Conditions
X cond eff At(Pkg1, BOS-PO)0 At(Truck1,
BOS)0 Closed(SJC)0600,1300 Visible(NGC132)
0517,0642
t0
At(Pkg1, BOS-PO)
At(Truck1, BOS)
25Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
26Possibility Reachability
?(pt) ? p is logically possible at t
?(pt) ? p is reachable at t
?(richtomorrow) ?(richtomorrow)
27Possibility Reachability
?(pt) ? p is logically possible at t
?(pt) ? p is reachable at t
Extend to Intervals
?(pi) ? ? t? i ?(pt)
?(pi) ? ? t? i ? (pt)
28Basic Axioms
Facts are possible reachable
pi ? ?(pi)
pi ? ?(pi)
Negations are not
pi ? ? t? i ?(pt)
pi ? ? t? i ?(pt)
Transitivity
?(pt) ? (pt ? qt) ? ?(qt)
29Basic Axioms
Actions
at ? Cond(at) ? Eff(at)
Exogenous conditions
X0
Closure of X
(Eff(x0) pt) ?(pi)
\
30Example
r
X0
p
?p
31Closure
r
X0
p
?p
? p
? p
closure
? r
32Basic
? r
basic
?p
? ?p
r
X0
p
?p
? p
? p
closure
? r
33Persistence
?(pi) ? meets(i,j) ? ?(pj) ? ?(pij)
? r
basic
?p
? ?p
r
X0
p
?p
? p
? p
closure
? r
34Persistence
?(pi) ? meets(i,j) ? ?(pj) ? ?(pij)
? r
basic persist
?p
??p
r
X0
p
?p
? p
? p
closure
? r
35Actions
Reachability
?Cond(at) ? ?Eff(at) ? ?(at)
Conjunctive optimism
?p1i1 ? ? ?pnin ? ?(p1i1 ? ? pnin)
36Action Application
?Cond(at) ? ?Eff(at) ? ?(at)
A cond r0, p0,2 eff ?r(0,2), r2, e2
?A
? r
?p
??p
37Action Application
?Cond(at) ? ?Eff(at) ? ?(at)
A cond r0, p0,2 eff ?r(0,2), r2, e2
? e
? r
?A
? r
?p
??p
38Persistence Again
?(pi) ? meets(i,j) ? ?(pi) ? ?(pij)
? e
? r
?A
? r
?p
??p
39Persistence (revised)
?(pi) ? meets(i,j) ? ?(pi) ? ?(pij)
?at ?(at) ? pi ? PersistEff(at) ? meets(i,j)
? ?(pi) ? ?(pij)
40Persistence
?at ?(at) ? pi ? PersistEff(at) ? meets(i,j)
? ?(pi) ? ?(pij)
? e
? r
?A
? r
?p
??p
41Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
42Mutual Exclusion
M(p1t1, , pntn)
Intervals
M(p1i1, , pnnn) ? ? t1? i1, , tn? in
M(p1t1, , pntn)
Conjunctive optimism
(?p1i1 ? ? ?pnin ) ? M(p1i1, , pnnn) ?
?(p1i1 ? ? pnin)
43Logical Mutex
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
M(pt, pt)
44Consequences
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
A cond p? eff e?
At ? pt?
At ? ete
M(At, pt?)
M(At, et?)
45Consequences
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
A cond p?
At ? pt?
Bt ? pte
B cond p?
M(At, Bt??)
46Implication Mutex
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
47Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
B cond q0 eff f1
48Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
B cond q0 eff f1
Bt ? qt
49Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
M(A1,q1)
B cond q0 eff f1
Bt ? qt
M(p1,B1)
50Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
M(A1,q1)
B cond q0 eff f1
Bt ? qt
M(p1,B1)
M(A1,B1)
51Implication Mutex for Intervals
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
M(?1i1, , ?nin) ? j t ?t ? ? t1? i1 ?1t1
? M(?j, , ?nin)
p1,3) q2,3)
A1,3) B2,3)
e f
52Explanatory Mutex
?? (? ? ?1) ? M(?, , ?n) ? M(?1, , ?n)
If all ways of proving ?1 are mutex with ?2, ,
?n ? M(?1, , ?n)
A
p
B
p1 q1
A1 B1
e2 f2
A
p
?
53Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
54Limiting Mutex
Reachable propositions Time spread
M(p2, q238)
0,2
236,240
p
q
A
Mutex spread theorem ?
55CSP?
Actions
Propositions
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
56Initial Domains
Actions
Propositions
A0, ?) B0, ?) C0, ?)
p0, ?) q0, ?) r0, ?)
57Interval Elimination
Actions
Propositions
A0, ?) B0, ?) C0, ?)
p0,5,8.1, ?) q0, ?) r0, ?)
?Reachability ? Mutex
58Mutex Representation
M(At, Bt2,t10)
M(A, B, 2,10)
M(A, B, ?, I)
59Final Remarks
Reachability simple Mutex surprisingly
simple complex realization Questions limiting
mutex CSP implementation? mutex representation TGP