Temporal Graph Plan - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Temporal Graph Plan

Description:

TGP. Actions. Real duration. Concurrent. Thrust. comlink. Heater. closevalve ... TGP Limitations. Actions. Preconditions hold throughout. Effects occur at end ... – PowerPoint PPT presentation

Number of Views:101
Avg rating:3.0/5.0
Slides: 55
Provided by: DavidE130
Category:
Tags: graph | plan | temporal | tgp

less

Transcript and Presenter's Notes

Title: Temporal Graph Plan


1
The Logic of ReachabilityDavid E. SmithAri K.
Jónsson
2
Apologies
No results ideas formalism Adverse
reactions Logic
3
Outline
Background Motivation Simple Reachability Mutual
Exclusion Practical Matters
4
Graphplan
5
Graphplan
Reachability! (optimistic achivability)
6
Mutual Exclusion
  • Two actions are mutex if
  • one clobbers the others effects or
    preconditions
  • they have mutex preconditions
  • Two propositions are mutex if
  • all ways of achieving them are mutex

7
Why Reachability?
Pruning reachable ? achievable Guidance distance
8
TGP
Actions Real duration Concurrent
Heater
Thrust
closevalve
comlink
9
TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
pre1
pre2
A
eff1
eff2
10
TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
pre2
cond3
A
Conservative!
11
TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during No exogenous conditions
A
eff
12
TGP Limitations
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
Inititial Conditions
t0
At(Pkg1, BOS-PO)
At(Truck1, BOS)
13
Impact?
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
t0600z
t1300z
Closed(SJC)
14
Monotonicity of Reachability
0
1
2
3
x p q x
x p q x
x p q x r
A
A
A
B
B
B
x
C
Propositions actions monotonically increase
15
Monotonicity of Mutex
0
1
2
3
x p q x
x p q x
x p q x r
A
A
A
B
B
B
x
C
Mutex relationships monotonically decrease
16
Cyclic Plan Graph
Propositions
Actions
x1 p1 q1 x0 r3
A0 B0 C2
Earliest start times
17
Cyclic Plan Graph
Propositions
Actions
x1 p1 q1 x0 r3
A0 B0 C2
Earliest end time
2
2
18
Impact?
Actions Preconditions hold throughout Effects
occur at end Affected propositions undefined
during Exogenous Conditions
t0600z
t1300z
Closed(SJC)
19
Windows of Reachability
Actions
Propositions
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
20
Windows of Mutex
Actions
Propositions
3,4x11,?
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
0,3x11,?
0,3x3,4
21
Action Model
cond1
Duration Parallel (pre) Conditions over intervals
Effects over intervals
cond2
cond3
A
eff
A
5A
5A
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
A
r
r
e
22
Semantics
P stops holding
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
A
r
r
e
23
Semantics
p stops holding
A cond r0, p0,2 eff ?r(0,2), r2, e2
p
???
A
???
r
r
???
e
???
Incomplete
24
Exogenous Conditions
Inititial Conditions
X cond eff At(Pkg1, BOS-PO)0 At(Truck1,
BOS)0 Closed(SJC)0600,1300 Visible(NGC132)
0517,0642
t0
At(Pkg1, BOS-PO)
At(Truck1, BOS)
25
Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
26
Possibility Reachability
?(pt) ? p is logically possible at t
?(pt) ? p is reachable at t
?(richtomorrow) ?(richtomorrow)
27
Possibility Reachability
?(pt) ? p is logically possible at t
?(pt) ? p is reachable at t
Extend to Intervals
?(pi) ? ? t? i ?(pt)
?(pi) ? ? t? i ? (pt)
28
Basic Axioms
Facts are possible reachable
pi ? ?(pi)
pi ? ?(pi)
Negations are not
pi ? ? t? i ?(pt)
pi ? ? t? i ?(pt)
Transitivity
?(pt) ? (pt ? qt) ? ?(qt)
29
Basic Axioms
Actions
at ? Cond(at) ? Eff(at)
Exogenous conditions
X0
Closure of X
(Eff(x0) pt) ?(pi)

\
30
Example
r
X0
p
?p
31
Closure
r
X0
p
?p
? p
? p
closure
? r
32
Basic
? r
basic
?p
? ?p
r
X0
p
?p
? p
? p
closure
? r
33
Persistence
?(pi) ? meets(i,j) ? ?(pj) ? ?(pij)
? r
basic
?p
? ?p
r
X0
p
?p
? p
? p
closure
? r
34
Persistence
?(pi) ? meets(i,j) ? ?(pj) ? ?(pij)
? r
basic persist
?p
??p
r
X0
p
?p
? p
? p
closure
? r
35
Actions
Reachability
?Cond(at) ? ?Eff(at) ? ?(at)
Conjunctive optimism
?p1i1 ? ? ?pnin ? ?(p1i1 ? ? pnin)
36
Action Application
?Cond(at) ? ?Eff(at) ? ?(at)
A cond r0, p0,2 eff ?r(0,2), r2, e2
?A
? r
?p
??p
37
Action Application
?Cond(at) ? ?Eff(at) ? ?(at)
A cond r0, p0,2 eff ?r(0,2), r2, e2
? e
? r
?A
? r
?p
??p
38
Persistence Again
?(pi) ? meets(i,j) ? ?(pi) ? ?(pij)
? e
? r
?A
? r
?p
??p
39
Persistence (revised)
?(pi) ? meets(i,j) ? ?(pi) ? ?(pij)
?at ?(at) ? pi ? PersistEff(at) ? meets(i,j)
? ?(pi) ? ?(pij)
40
Persistence
?at ?(at) ? pi ? PersistEff(at) ? meets(i,j)
? ?(pi) ? ?(pij)
? e
? r
?A
? r
?p
??p
41
Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
42
Mutual Exclusion
M(p1t1, , pntn)
Intervals
M(p1i1, , pnnn) ? ? t1? i1, , tn? in
M(p1t1, , pntn)
Conjunctive optimism
(?p1i1 ? ? ?pnin ) ? M(p1i1, , pnnn) ?
?(p1i1 ? ? pnin)
43
Logical Mutex
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
M(pt, pt)
44
Consequences
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
A cond p? eff e?
At ? pt?
At ? ete
M(At, pt?)
M(At, et?)
45
Consequences
(?1 ? ? ?n) ? M(?1, , ?n)
Consequences
A cond p?
At ? pt?
Bt ? pte
B cond p?
M(At, Bt??)
46
Implication Mutex
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
47
Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
B cond q0 eff f1
48
Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
B cond q0 eff f1
Bt ? qt
49
Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
M(A1,q1)
B cond q0 eff f1
Bt ? qt
M(p1,B1)
50
Implication Mutex Example
M(?1, , ?n) ? (?1 ? ?1) ? M(?1, , ?n)
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
p1 q1
A1 B1
e2 f2
Example
M(p1,q1)
A cond p0 eff e1
At ? pt
M(A1,q1)
B cond q0 eff f1
Bt ? qt
M(p1,B1)
M(A1,B1)
51
Implication Mutex for Intervals
M(?1, , ?n) ? (? ? ?1) ? M(?, , ?n)
M(?1i1, , ?nin) ? j t ?t ? ? t1? i1 ?1t1
? M(?j, , ?nin)
p1,3) q2,3)
A1,3) B2,3)
e f
52
Explanatory Mutex
?? (? ? ?1) ? M(?, , ?n) ? M(?1, , ?n)
If all ways of proving ?1 are mutex with ?2, ,
?n ? M(?1, , ?n)
A
p
B
p1 q1
A1 B1
e2 f2
A
p
?
53
Outline
Motivation Simple Reachability Mutual
Exclusion Practical Matters
54
Limiting Mutex
Reachable propositions Time spread
M(p2, q238)
0,2
236,240
p
q
A
Mutex spread theorem ?
55
CSP?
Actions
Propositions
A0,3,6,9 B11,? C
p0,5,8.1,16 q2,17 r3,?
56
Initial Domains
Actions
Propositions
A0, ?) B0, ?) C0, ?)
p0, ?) q0, ?) r0, ?)
57
Interval Elimination
Actions
Propositions
A0, ?) B0, ?) C0, ?)
p0,5,8.1, ?) q0, ?) r0, ?)
?Reachability ? Mutex
58
Mutex Representation
M(At, Bt2,t10)
M(A, B, 2,10)
M(A, B, ?, I)
59
Final Remarks
Reachability simple Mutex surprisingly
simple complex realization Questions limiting
mutex CSP implementation? mutex representation TGP
Write a Comment
User Comments (0)
About PowerShow.com