Title: Examples of Science
1Examples of Science
- Generic fluxes associated with cosmic rays
- Astrophysics gamma ray bursts
- Particle physics cold dark matter search
2Natures Particle Accelerators
- Electromagnetic Processes
- Synchrotron Emission
- Eg a (Ee/mec2)3 B
- Inverse Compton Scattering
- Ef (Ee/mec2)2 Ei
- Bremmstrahlung
- Eg 0.5 Ee
- Hadronic Cascades
- p g -gt p po -gt e n g
- p p -gt p po -gt e n g
3High Energy Gamma-Ray Astrophysics
Typical Multiwavelength Spectrum from High Energy
g-ray source
Energy Emitted
Photon Energy
4Spinning Neutron Star Fills Nebula with Energetic
Electrons gt Synchrotron Radiation and Inverse
Compton Scattering
5Active Galactic Nuclei
- Massive Black Hole Accelerates Jet of Particles
to Relativistic Velocities - gt Synchrotron Emission and Inverse Compton
and/or Proton Cascades
6Challenge I Acceleration
shock velocity n
R
(V e F b v/c)
B
n
- boosted energy
- from cosmic accelerator
-
7Energy in extra-galactic cosmic rays 3x1037
erg/s or 1044 erg/yr per (Mpc)3
3x1039 erg/s per galaxy 3x1044 erg/s per active
galaxy 2x1052 erg per gamma ray burst
1 TeV 1.6 erg
8brightest known sources match IF equal energy in
protons and electrons (photons)
- AGN (steady)
- G few requires Lgt1047 erg/s
- Few, brightest AGN
- GRBs (transient)
- G 300 requires Lgt1051 erg/s
- Average Lg1052 erg/s
- equal energy in neutrinos?
9some definitions
- flux F dN/dE (particles cm-2 s-1)
- fluency f E dN/dE (erg cm-2 s-1)
- luminosity L f x 4pd2 (erg s-1)
10Point Sources
Signal
Background (atmos. ns)
For 10 -- 1000 TeV
11Cosmological sources
Most Powerful Cosmological sources AGN
(Steady) GRBs (100s transient)
- 1 km2 detector
- Same UHE CR suspects
12Challenge II Propagation (GZK)
- gt1020eV proton lElt100 Mpc
- Bright AGN (Radio galaxies)- too far ?
- GRBs ?
- Does the spectrum support GZK?
13Model
EW 95
- Flys Eye fit for Galactic heavy (lt1019eV)
- JGE-3.50
- X-Galactic protons
- Generation spectrum (shock
acceleration) - Generation rate
-
- Redshift evolution SFR
14Model vs. Data
Bahcall EW 03
X-G Model
Ruled out 7s
5s
15Conclusions are Robust
16CR Conclusions
- Yakutsk, Flys Eye, HiRes Consistent with
- XG protons
GZK - Robust Consistent with GRB model predictions
- AGASA (25 of total exposure)
- Consistent below 1020eV
- Excess above 1020eV 2.2/-0.8 8
observed - New source/ New physics/ 25
energy - Local inhomogeneity
over-estimate - Stay tuned for Auger (Hybrid)
??
17diffuse flux
flux velocity x density flux c/4p x
density, for isotropic flux --gt in energy
density E dN/dE dE c/4p x rE E dN/dE A
E -g cm-2 s-1 sr-1 (g -1)
18diffuse background
Signal
Background (atmos. ns)
Waxman-Bahcall bound
1km2 detector --gt 50 events/yr
19n Flux Bound
- Observed JCR(gt1019eV)
-
-
- For Sources with tgp lt 1
- Strongest know z evolution (QSO, SFR) collect
ns beyond GZK
EW Bahcall 99, Bahcall EW 01
20tgp for known sources
eg
p
e
n
e-
eg
ep
21Antares
Nemo
22Neutrinos from GRB an example
23Gamma-ray Bursts
M on 1 Solar Mass BH
Relativistic Outflow
G300
e- acceleration in Collisionless shocks
e- Synchrotron MeV gs Lg1052erg/s
Meszaros, ARAA 02
24Gamma Ray Burst
- Photons and protons
- coexist in internal
- shocks
- External shocks
25Correlations to BATSE Gamma Ray Bursts ?
1969
BATSE 1991- May 2000
1997
26NUMEROLOGY
- Lg 1052 erg/s
- R0 100 km
- Eg 1 MeV
- ?t 1-10 msec
- 300
- tH 1010 years
- dE/dt 4x1044 erg Mpc-3yr-1
- Pdetected 10-6 En0.8 (in TeV)
- spg 10-28cm2 for pg?np
- lt xp ? p gt 0.2
27GRB1
FRAMES
Fireball Frame
Observer Frame
DR
R
R'
v
c
g 102 - 103 E g E' 1 MeV R g R'
d
DR cDt R0 with R0 R' (t 0)
observed 1 msec
28grb kinematics
-
v2 __ c2
R
q
g 1- -1/2
v
-
102 - 103
q
c
DR __ c
1 _ c
Dt (R - Rcosq)
R __ 2c
v __ c
R __ c
v2 __ c2
R __ 2c
1 __ g2
-
( 1 - )
(1- )
-
-
29GRB3
Pion (neutrino) production when protons and
photons coexist
neutrinos
pg np
gamma rays
np0
Ep gt 1.4 x 104 TeV
m2D - m2p _________ 4E'g
E'p gt
_
_
En 1/4 lt xp p?gt Ep 1/20 Ep 0.7 PeV
30Fraction of GRB energy converted into pion
(neutrino) production
GRB4
- f p lt?x p p gt 15
- l-1pg ng spg
DR' ___ lpg
_
e
g (Lg)
synchro/ICompton
fireball
p
n
pions
(LCR)
31GRB2
Photon Density in the Fireball
LgDt/g ______ 4pR'2DR'
U'g ___ E'g
ng
E'g ___ g
R' g2cDt
DR' gcDt
note for g 1 (no fireball) optical depth of
photons is topt
R0ngsTh 1015
R0 __ lTh
32GRB 5
Neutrino flux from GRB fireballs
U? ___ E?
1 ___ E?
fn (1/2 f? tH
)
c __ 4p
c __ 4p
dE __ dt
_
charged p only
LCR
Lg
Nevents Psurvived Pdetected fn 20 km -2 yr -1
_
33GRB 6
NUMEROLOGY
ltxp -gt pgt 1/5 spg 10-28cm2 tH 1010
years dE/dt 4x1044 erg Mpc-3yr-1 Pdetected
10-6 En0.8 (in TeV)
Lg 1052 erg/s R0 100 km Eg 1 MeV ?t 1-10
msec g 300
34Search for HE n from GRB
35Correlations to GRB
Background cuts can be loosened considerably ?
high signal efficiency
88 BATSE bursts in 1997
Combined data give sensitivity prediction!
36Marriage of Astronomy and Physics
- Astronomy new window on the Universe!
- You can see a lot by
looking - Physics
- search for dark matter
- search for topological defects and cosmological
remnants - search for monopoles
- measure the high-energy neutrino cross section
- (TeV-scale gravity?)
- cosmic ray physics 150 atmospheric nus/day
- array with EeV sensitivity
- test special and general relativity with new
precision
37Relic density simple approach
- Decoupling occurs when
- G lt H
- We have
-
38The MSSM general
- The Lightest Supersymmetric Particle (LSP)
- Usually the neutralino. If R-parity is
conserved, it is stable. - The Neutralino c
- Gaugino fraction
- 1. Select MSSM parameters
- 2. Calculate masses, etc
- 3. Check accelerator constraints
- 4. Calculate relic density
- 5. 0.05 lt Wch2 lt 0.5 ?
- 6. Calculate fluxes, rates,...
- Calculation done with
http//www.physto.se/edsjo/darksusy/
39The mc-Zg parameter space
Gauginos
Mixed
Higgsinos
40WIMP search strategies
- Direct detection
- Indirect detection neutrinos from the
Earth/Sun antiprotons from the galactic
halo positrons from the galactic halo gamma
rays from the galactic halo gamma rays from
external galaxies/halos synchrotron radiation
from the galactic center / galaxy clusters ...
41Direct detection - general principles
42EdelweissJune 2002
43Direct detection current limits
Spin-independent scattering
Spin-dependent scattering
Direct detection experiments have started
exploring the MSSM parameter space!
44Neutralino capture and annihilation
Sun
interactions
hadronization
Freese, 86 Krauss, Srednicki Wilczek,
86Gaisser, Steigman Tilav, 86
Silk, Olive and Srednicki, 85Gaisser, Steigman
Tilav, 86
45Indirect detection for cyclists
e.g. 104 m2 n-telescope searches for 500 GeV WIMP
gt LHC limit
300 km/s
1. ? - flux
500 GeV ________ mz
?? rcv 2.4 x 104 cm-2s-1
500 GeV ________ mz
0.4 GeV cm-3 8 x 10-4 cm-3
2. Solar cross section
M8 __ mN
S? ns s (?N) 1.2x1057 10-41cm2
GF2 ___ mZ2
MZ2 ___ mH4
(GF mN2)2
46N? capture rate annihilation rate
_ c c
WW
250 GeV
500 GeV
mnm
N8 ?? S?? 3 x 1020 s-1
3. Capture rate by the sun
4. Number of muon-neutrinos Nnm 2 x
0.1 N ?
Leptonic BR0.1
47Nnm ____ 4pd2
5. ?nm 2 x 10-8 cm-2 s-1
1 A.U.
5.5 x 1023 cm-3
6. events area x ?nm ?x ?ice x sn? ???m x
Rm
104 m2
En ___ GeV
- ?sn? ??m 10-38 cm2 2.5 x 10-36 cm2
_
E? ___ GeV
events 10 per year
48WIMPs in Center of Earth
Baikal
AMANDA limit 10 strings only
49IceCube vs
Direct Detection (Zeppelin4/Genius) Black
out Green yes Blue no
50MSSM parameter spaceFuture probed regions I
IceCube
51Limits m flux from the Earth/Sun
Earth
Sun
52Flux from Earth/Sun and future GENIUS/CRESST
limits
Earth
Sun