Title: Impact of Geothermal Heating on the General Circulation
1Impact of Geothermal Heating on the General
Circulation
Alistair Adcroft
Jeffery Scott
MIT
MIT
Jochem Marotzke
SOC
2Geothermal heating in context
- Solar radiation 175,000 TW
- Eq. to Pole 3,000 TW
- Geothermal heat flux 32 TW
- Tidal dissipation 3.7 TW
Sandströms Theorem A closed steady circulation
can be maintained in the ocean only if the
heating source is at a lower level than the
cooling source.
Geothermal heating is at depth
Munk Wunsch 98, Huang 99
3Geothermal / Hydrothermal
Stommel 82, Joyce Speer 89, Helfrich Speer
95, . . .
Hydrothermal
34 Low temp 10-20 ºC 1 High temp 300-400 ºC
Geothermal 35-50 mW m-2
10TW
22TW
Sclater et al., 1980 Stein et al., 1995
4Vorticity balance
Joyce et al., 86
? ? v dz f w(z1) - Fb(zb)/?)
which is negligible
Also argue a heating rate
0.04 ºC / 100 yr for a 1000 m column
5Diffusive limit
Vertical diffusion of ? anomaly
cp?? ?z ? Qgeo
using Qgeo 50 mW m-2 ? 5 x
10-5 m2 s-1
Levitus
?? 0-H H ?z ? 1.25 ºC
diffusive anomaly
6Sector model
- Simple forcing
- No wind
- SST restoring
Qsurf - ? ( ? - a cos(y) )
z
4500 m
64 ºN
y
x
Eq
60 º
Qgeo 50 mW m-2
Scott et al. 00
7Global model
- MIT OGCM
- Realistic topography (no Artic!)
- Seasonal forcing
- Obs. Heat, Freshwater Fluxes, Wind stress
- Surface restoring to Levitus
- Gent/McWilliams eddy parameterization
- Convective adjustment
- Uniform goethermal heat flux of 50 mW m-2
8Summary
- 50 mW m-2 geothermal heat flux
- ? 2 Sv perturbation OC in Pacific
- Advective rather than diffusive response
- Response intimately linked with existing
circulation and stratification - Uniform geothermal heating with no other
- forcing does not drive a large scale flow
- . . . probably smaller than model errors!