Title: Minimum of Cost Function with Nonzero First Derivative
1Time dependent Model Output Sensitivity
Inverse Analysis of Soil Moisture from
Observations of Atmospheric Temperature and
Humidity
2Outline of the Model
3Outline of the Model
4Outline of the Model
5Outline of the Model
Question How do observations depend on control
variables hi?
6Sensitivity of model output may depend on
integration time
At time tp/2 all information about initial q is
contained in velocity v!
7Output
8- Derivatives of atmospheric humidity at 2100 with
respect to prior - Solid Prior upward heat fluxes in the soil
- Dotted Prior heat fluxes from the soil to
the atmosphere
Time (Hour of the Day)
9Parameter Optimisation
(Adjoint model more efficient than linear model)
Example Algae Growth in the River Elbe
10(No Transcript)
11Green Algae
12Diatoms
13(No Transcript)
14Parameter
Radiation Water Temperature Discharge
Model WAMPUM
Simulated Chlorophyll-a
Data
Model Output
15A) Evaluation of the model fit to data (Cost
Function)
16(No Transcript)
17A) Evaluation of the model fit to data (Cost
Function)
Model Results
Data
Data Chlorophyll-a Oxygen
Scaling Observation Error
Model Parameters
18(No Transcript)
19Parameter Uncertainties
(Linear model more efficient than adjoint model)
Example Algae Growth in the River Elbe
20Uncertainty when combining two observations with
observation errors s1 and s2, respectively
21(No Transcript)
22Evaluation of the model fit to data
Tangent Linear model more efficient than adjoint
model
23Posterior Standard Deviations
For individual parameters
24Posterior Standard Deviations
For individual parameters
Two Species Green algae, Diatoms
- Demand of Light K_light, K_light
- Growth Rate K_growth, K_growth
- Fraction of Mass being Silica F_silica
- Physical Parameter Depth
- 2 light parameters depend on prior knowledge
- other 4 parameters controlled by data??
In the direction of eigenvectors
25Spectrum of eigenvalues
1. eigenvector
2. eigenvector
26Isolines of Cost Function
Projecting Monte Carlo Samples onto Eigenvectors
of the Posterior Covariance Matrix
27Non-Differentiable Cost Functions
28Minimum of Cost Function with Non-zero First
Derivative
Minimum
Cost Function
- Problem
- First derivative is discontinuous
- Second derivative in the minimum (Hessian) cannot
be analysed.
- Possible Reasons
- Unproper parameterisations
- Problems in numerical integration
- Adjoint Modelling
- Helps to detect and analyse this situation.
29Convergence to Minimum with non-zero Gradient
IMAS Output
J ? J
grad J step size 1 1.0982E03
0.0E00 1.1E02 2.4E01 2
1.0420E03 -5.6E01 6.3E01 2.4E01
3 9.1270E02 -1.3E02 8.8E01
2.4E01 4 8.8356E02 -2.9E01
2.2E02 2.4E01 ........ 10
6.4632E02 -8.5E00 2.0E01 7.4E00
11 6.4283E02 -3.5E00 1.2E01
1.5E01 12 6.4045E02 -2.4E00
9.6E00 2.7E00 13 6.3033E02
-1.0E01 4.1E01 2.2E00 14
6.1719E02 -1.3E01 1.9E01 5.7E00
15 6.1295E02 -4.2E00 1.4E01
9.8E00 ......... 38 6.0103E02
-1.6E-10 2.8E-02 3.3E-03 39
6.0103E02 -1.0E-10 2.8E-02 4.4E-03
40 6.0103E02 -9.4E-11 8.7E-02
1.0E-05 41 6.0103E02 -1.7E-12
2.8E-02 8.9E-06 42 6.0103E02
-1.2E-11 2.8E-02 2.8E-05 43
6.0103E02 -5.0E-12 2.8E-02 4.5E-05
convergence at delta x
30Result of Adjoint Model Run (Gradient)
type (control_var_list_type) Results of
adjoint model no_variables 6
no_components 6 6 active, 0 passive
variables no type a d sigma size
scaling name
value 1 1 T T 0.87 1
e.87 k_light_green -
1.722188E-02 2 1 T T 0.43
1 e.43 k_light_diatom -
5.807458E-08 3 1 T T 0.29E-01 1
e.29E-01 k_growth_green 1.073324E-02
4 1 T T 0.29E-01 1 e.29E-01
k_growth_green 1.430435E-06 5 1 T
T 0.87E-02 1 e.87E-02 frac_si
- 2.437749E-07 6 1 T T
0.87E-01 1 e.87E-01 depth
- 1.954283E-02 end type (control_var_list_t
ype)
Conclusion Some problem in the module of
the program dealing with green algae.
31Zoomed Cost Function
Before Correction
601.0258
601.0256
601.0254
601.0252
1.6995
1.6996
1.6997
1.6998
1.6999
1.7000
water depth
32(No Transcript)
33(No Transcript)
34Acknowledgements
Fred Kucharski Soil Moisture
Analysis Andreas Rhodin IMAS, Soil
Moisture Analysis Gerd Blöcker Data (Water
Quality) Mirco Scharfe Water Quality,
Uncertainty Analysis Friedhelm Schroeder Model
WAMPUM