Title: HAMILTONIAN STRUCTURE OF
1HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
2HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
3HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
4HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
Example PII
5HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
Example PII
- Isomonodromic deformations method (IMD)
6HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
Example PII
- Isomonodromic deformations method (IMD)
7HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
Example PII
- Isomonodromic deformations method (IMD)
8HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
Example PII
- Isomonodromic deformations method (IMD)
Example PII
9In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
10In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
11In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
(2)
Example PII
What are p , p , q , q in this case? What is H?
1
1
2
2
12In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
(2)
Example PII
What are p , p , q , q in this case? What is H?
1
1
2
2
Literature Adler-Kostant-Symes,
Adams-Harnad-Hurtubise, Gehktman, Hitchin,
Krichever, Novikov-Veselov, Scott,
Sklyanin..
Recent books Adler-van Moerbeke-Vanhaeke
Babelon-Bernard-Talon
13Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
14Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
15Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
- F(M) algebra of differentiable functions
16Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
- F(M) algebra of differentiable functions
, F(M) x F(M) -gt F(M)
f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
17Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
- F(M) algebra of differentiable functions
, F(M) x F(M) -gt F(M)
f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
- Vector field XH associated to H eF(M)
XH(f) H,f
18Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
- F(M) algebra of differentiable functions
, F(M) x F(M) -gt F(M)
f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
- Vector field XH associated to H eF(M)
XH(f) H,f
A Posson manifold is a differentiable manifold M
with a Poisson bracket ,
19Recap on Lie groups and Lie algebras
20Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
- multiplication G x G --gt G
21Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
- multiplication G x G --gt G
Example
22Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
- multiplication G x G --gt G
Example
Lie algebra g vector space with Lie bracket
- a x b y,z a x, z b y, z linearity
- x, y, z z, x, y y, z, x 0
Jacobi
23Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
- multiplication G x G --gt G
Example
Lie algebra g vector space with Lie bracket
- a x b y,z a x, z b y, z linearity
- x, y, z z, x, y y, z, x 0
Jacobi
Example
24Adjoint and coadjoint action.
- Given a Lie group G its Lie algebra g is Te G.
25Adjoint and coadjoint action.
- Given a Lie group G its Lie algebra g is Te G.
Example G SL(2,C). Then
26Adjoint and coadjoint action.
- Given a Lie group G its Lie algebra g is Te G.
Example G SL(2,C). Then
- g acts on itself by the adjoint action
27Adjoint and coadjoint action.
- Given a Lie group G its Lie algebra g is Te G.
Example G SL(2,C). Then
- g acts on itself by the adjoint action
- g acts on g by the coadjoint action
28Example
- Symmetric non-degenerate bilinear form
29Example
- Symmetric non-degenerate bilinear form
30Example
- Symmetric non-degenerate bilinear form
31Example
- Symmetric non-degenerate bilinear form
32Loop algebra
33Loop algebra
34Loop algebra
35Loop algebra
36Loop algebra
37Loop algebra
38Loop algebra
39Coadjoint orbits
40Coadjoint orbits
Integrable systems flows on coadjoint orbits
41Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
42Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
43Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
44Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
45Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
- Differential of a function
46Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
- Differential of a function
Example PII. Take
47Definition
48Definition
Example
49Definition
Example
50Definition
Example
51Definition
Example
52Hamiltonians
53Hamiltonians
54Hamiltonians
55Hamiltonians
- Kostant Kirillov Poisson bracket
56Hamiltonians
- Kostant Kirillov Poisson bracket
- Define then we get the
evolution equation