HAMILTONIAN STRUCTURE OF - PowerPoint PPT Presentation

1 / 56
About This Presentation
Title:

HAMILTONIAN STRUCTURE OF

Description:

Commutator: Killing form: Loop algebra. Commutator: Killing form: ... Commutator: Killing form: Subalgebra: Dual space: Coadjoint orbits. Coadjoint orbits ... – PowerPoint PPT presentation

Number of Views:127
Avg rating:3.0/5.0
Slides: 57
Provided by: martama
Category:

less

Transcript and Presenter's Notes

Title: HAMILTONIAN STRUCTURE OF


1
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
2
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

3
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

4
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

Example PII
5
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

Example PII
  • Isomonodromic deformations method (IMD)

6
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

Example PII
  • Isomonodromic deformations method (IMD)

7
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

Example PII
  • Isomonodromic deformations method (IMD)

8
HAMILTONIAN STRUCTURE OF THE PAINLEVE EQUATIONS
  • Hamiltonian formulation

Example PII
  • Isomonodromic deformations method (IMD)

Example PII
9
In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
10
In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
11
In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
(2)
Example PII
What are p , p , q , q in this case? What is H?
1
1
2
2
12
In this course we shall see how to deduce the
Hamiltonian formulation from the IMD.
Motivation find the Hamiltonian structure of
more complicated generalizations of the
Painleve equations
(2)
Example PII
What are p , p , q , q in this case? What is H?
1
1
2
2
Literature Adler-Kostant-Symes,
Adams-Harnad-Hurtubise, Gehktman, Hitchin,
Krichever, Novikov-Veselov, Scott,
Sklyanin..
Recent books Adler-van Moerbeke-Vanhaeke
Babelon-Bernard-Talon

13
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
14
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
  • M phase space

15
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
  • M phase space
  • F(M) algebra of differentiable functions

16
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
  • M phase space
  • F(M) algebra of differentiable functions

, F(M) x F(M) -gt F(M)
  • Poisson bracket

f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
17
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
  • M phase space
  • F(M) algebra of differentiable functions

, F(M) x F(M) -gt F(M)
  • Poisson bracket

f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
  • Vector field XH associated to H eF(M)

XH(f) H,f
18
Recap on Poisson and symplectic manifolds.
(Arnold, Classical Mechanics)
  • M phase space
  • F(M) algebra of differentiable functions

, F(M) x F(M) -gt F(M)
  • Poisson bracket

f,g -g,f skewsymmetry
f, a g b h a f,g b f,h linearity
f, g h f, g h f, h g Libenitz
f,g,h h,f,g g,h,f 0 Jacobi
  • Vector field XH associated to H eF(M)

XH(f) H,f
A Posson manifold is a differentiable manifold M
with a Poisson bracket ,
19
Recap on Lie groups and Lie algebras
20
Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
  • multiplication G x G --gt G
  • inversion G --gt G

21
Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
  • multiplication G x G --gt G
  • inversion G --gt G

Example
22
Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
  • multiplication G x G --gt G
  • inversion G --gt G

Example
Lie algebra g vector space with Lie bracket
  • x, y -y,x antisymmetry
  • a x b y,z a x, z b y, z linearity
  • x, y, z z, x, y y, z, x 0
    Jacobi

23
Recap on Lie groups and Lie algebras
Lie group G analytic manifold with a compatible
group structure
  • multiplication G x G --gt G
  • inversion G --gt G

Example
Lie algebra g vector space with Lie bracket
  • x, y -y,x antisymmetry
  • a x b y,z a x, z b y, z linearity
  • x, y, z z, x, y y, z, x 0
    Jacobi

Example
24
Adjoint and coadjoint action.
  • Given a Lie group G its Lie algebra g is Te G.

25
Adjoint and coadjoint action.
  • Given a Lie group G its Lie algebra g is Te G.

Example G SL(2,C). Then
26
Adjoint and coadjoint action.
  • Given a Lie group G its Lie algebra g is Te G.

Example G SL(2,C). Then
  • g acts on itself by the adjoint action

27
Adjoint and coadjoint action.
  • Given a Lie group G its Lie algebra g is Te G.

Example G SL(2,C). Then
  • g acts on itself by the adjoint action
  • g acts on g by the coadjoint action

28
Example
  • Symmetric non-degenerate bilinear form

29
Example
  • Symmetric non-degenerate bilinear form
  • Coadjoint action

30
Example
  • Symmetric non-degenerate bilinear form
  • Coadjoint action

31
Example
  • Symmetric non-degenerate bilinear form
  • Coadjoint action

32
Loop algebra
33
Loop algebra
  • Commutator

34
Loop algebra
  • Commutator
  • Killing form

35
Loop algebra
  • Commutator
  • Killing form
  • Subalgebra

36
Loop algebra
  • Commutator
  • Killing form
  • Subalgebra
  • Dual space

37
Loop algebra
  • Commutator
  • Killing form
  • Subalgebra
  • Dual space

38
Loop algebra
  • Commutator
  • Killing form
  • Subalgebra
  • Dual space

39
Coadjoint orbits
40
Coadjoint orbits
Integrable systems flows on coadjoint orbits
41
Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
42
Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
43
Coadjoint orbits
Integrable systems flows on coadjoint orbits
Example PII
44
Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
45
Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
  • Differential of a function

46
Kostant - Kirillov Poisson bracket on the dual of
a Lie algebra
  • Differential of a function

Example PII. Take
47
Definition
48
Definition
Example
49
Definition
Example
50
Definition
Example
51
Definition
Example
52
Hamiltonians
53
Hamiltonians
  • Fix a function

54
Hamiltonians
  • Fix a function
  • For every define

55
Hamiltonians
  • Fix a function
  • For every define
  • Kostant Kirillov Poisson bracket

56
Hamiltonians
  • Fix a function
  • For every define
  • Kostant Kirillov Poisson bracket
  • Define then we get the
    evolution equation
Write a Comment
User Comments (0)
About PowerShow.com