VSOP2 Astrometry: Astrometric Accuracy Made with Phase Referencing - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

VSOP2 Astrometry: Astrometric Accuracy Made with Phase Referencing

Description:

VSOP-2 Astrometry: Astrometric Accuracy Made with Phase Referencing ... Astrometry ... VSOP-2 astrometry will be twice or more accurate than ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 53
Provided by: asakiyo
Category:

less

Transcript and Presenter's Notes

Title: VSOP2 Astrometry: Astrometric Accuracy Made with Phase Referencing


1
VSOP-2 Astrometry Astrometric Accuracy Made with
Phase Referencing
  • Yoshiharu Asaki (ISAS)
  • (VSOP-2 Symposium, Dec 3-7, 2007)

2
Outline
  • Background
  • VLBI Observation Simulation Software
  • VSOP-2 Phase Referencing Simulations
  • Astrometric Accuracy
  • Calibrator Candidate
  • Comments

3
Background
4
VLBI Phase Referencing Astrometry Era
5
Galactic Water Maser Source, S Per
Asaki et al., IAUS-242, 2007
6
Galactic Water Maser Source S Per(relative
position to a continuum source, KR 143)
Asaki et al., IAUS-242, 2007
7
Galactic Water Maser Source S Per(relative
position to a continuum source, KR 143)
Asaki et al., IAUS-242, 2007
8
S Per Annual Parallax 0.399 0.014
mas?Distance2.51 0.09 kpc
Asaki et al., IAUS-242, 2007
9
VERA VLBI Phase Referencing Astrometry
(Oral talk given by M. Honma, and several poster
presentations downstairs)
10
VSOP-2Phase Referencing
11
VLBI Observation Simulation Software
12
Simulation Investigations for VLBI Phase
Referencing Astrometry
  • Pradel et al. 2006, AAp, 452, 1099
  • VLBA, EVN, VLBAEVN
  • Asaki et al. 2007, PASJ, 59, 397
  • VSOP-2

13
Astronomical Radio Interferometer Simulator (ARIS)
  • VLBI Phase Referencing Simulation
  • Error sources
  • Space-VLBI Observation Simulations
  • Orbit determination (OD) errors
  • Attitude control errors
  • Operation satellite tracking schedule

14
Simulated Fringe with ARIS
Before Phase Referencing
After Phase Referencing
15
Characteristic Phase Errors related to ASTRO-G
  • Pointing Error
  • Attitude error and telescope optics design
  • Antenna Position Error
  • Orbit determination (OD)

16
Delay Error Related to the Attitude
Wave Front
Right Attitude
17
Delay Error due to the Attitude Error
Wave Front
Right Attitude
Pointing Error
18
Delay Error due to the Attitude Error
Wave Front
Right Attitude
Pointing Error
19
Attitude Error ? Delay Error
  • Specification of Pointing Requirement lt 5/1000

20
Attitude Error ? Delay Error
  • Specification of Pointing Requirement lt 5/1000

21
OD Error Model
cross track
True Trajectory
along track
OD
radial
22
OD Error Model
  • Tracking Stations
  • Red ISAS, Usuda
  • Yellowish green NRAO, Green Bank
  • Blue DSN, Robled
  • Light blue DSN, Tid
  • Pink DSN, Goldstone
  • Arrow Displacement vector of the satellite
    position.

23
OD Error Model for ASTRO-G(Typical Profile)
24
OD Error Model for ASTRO-G(Typical Profile)
Apogee
Apogee
Perigee
Perigee
Perigee
25
Before Phase Referencing(Pointing Error OD
Error)
Observation Frequency 43GHz Pointing Error (3s)
5/1000 OD Error 4cm at apogee, 1cm at
perigee
Target Calibrator
26
After Phase Referencing(Pointing Error OD
Error)
Observation Frequency 43GHz Pointing Error (3s)
5/1000 OD Error 4cm at apogee, 1cm at
perigee
27
VSOP-2 Phase Referencing Simulations
28
Simulation Conditions
  • Array
  • VLBA (NRAO) ASTRO-G
  • GRTs lowest elevation 20 deg
  • Switching Cycle Time 60 sec
  • Observation Time
  • 15 hours (2 orbital periods of ASTRO-G)
  • Target Calibrator
  • Point sources
  • Total Flux Density 1 Jy
  • Declination 59
  • Tropospheric Turbulence
  • Stable condition for 43-GHz observations
  • Typical condition for 22- and 8-GHz observations

29
Simulation Conditions
  • Array
  • VLBA (NRAO) ASTRO-G
  • GRTs lowest elevation 20 deg
  • Switching Cycle Time 60 sec
  • Observation Time
  • 15 hours (2 orbital periods of ASTRO-G)
  • Target Calibrator
  • Point sources
  • Total Flux Density 1 Jy
  • Declination 59
  • Tropospheric Turbulence
  • Stable condition for 43-GHz observations
  • Typical condition for 22- and 8-GHz observations

30
Simulation Conditions
  • Array
  • VLBA (NRAO) ASTRO-G
  • GRTs lowest elevation 20 deg
  • Switching Cycle Time 60 sec
  • Observation Time
  • 15 hours (2 orbital periods of ASTRO-G)
  • Target Calibrator
  • Point sources
  • Total Flux Density 1 Jy
  • Declination 59
  • Tropospheric Turbulence
  • Stable condition for 43-GHz observations
  • Typical condition for 22- and 8-GHz observations

31
Simulation Conditions
  • Array
  • VLBA (NRAO) ASTRO-G
  • GRTs lowest elevation 20 deg
  • Switching Cycle Time 60 sec
  • Observation Time
  • 15 hours (2 orbital periods of ASTRO-G)
  • Target Calibrator
  • Point sources
  • Total Flux Density 1 Jy
  • Declination 59
  • Tropospheric Turbulence
  • Stable condition for 43-GHz observations
  • Typical condition for 22- and 8-GHz observations

32
Simulation Conditions
  • Array
  • VLBA (NRAO) ASTRO-G
  • GRTs lowest elevation 20 deg
  • Switching Cycle Time 60 sec
  • Observation Time
  • 15 hours (2 orbital periods of ASTRO-G)
  • Target Calibrator
  • Point sources
  • Total Flux Density 1 Jy
  • Declination 59
  • Tropospheric Turbulence
  • Stable condition for 43-GHz observations
  • Typical condition for 22- and 8-GHz observations

Not Included
33
ON-source Time for ASTRO-G and the VLBA
VLBA
ASTRO-G
VLBA
2 separation 60-s switching cycle
ASTRO-G
34
Typical (u, v) Coverage(2 pair, 43 GHz)
Target Calibrator
35
ARIS AIPSImaging Simulations
0.5 separation 2-cm OD Error
  • ARIS (Fringe Generation)
  • Phase Referencing
  • FITS-IDI save
  • AIPS (Image Synthesis)
  • FITS-IDI load
  • No Calibration
  • CLEAN

Synthesized Image with AIPS ?
36
ARIS AIPSImaging Simulations
0.5 separation 2-cm OD Error
  • ARIS (Fringe Generation)
  • Phase Referencing
  • FITS-IDI save
  • AIPS (Image Synthesis)
  • FITS-IDI load
  • No Calibration
  • CLEAN

Synthesized Image with AIPS ?
37
Astromertric Accuracyin this study
Synthesized Image
Astrometric Accuracy E ( r )
r
Declination
The point source model position
The brightest position of a synthesized image
Right Ascension
38
OD Error Tropospheric EPL Bias Error
39
OD Error (apogee) 2cm, 4cm, 8cm, 16cm, 32cm
EPL Bias Error 4cm (1s)
8GHz
22GHz
43GHz
VLBA
EPL Bias Error 2cm (1s)
40
Q-band CLEAN Image
Q-band CLEAN Image (no VLBI error, no noise)
VLBA
ASTRO-G VLBA
Model
15-hour observation with the VLBA
41
Q-band CLEAN Image
Q-band CLEAN Image (no VLBI error, no noise)
VLBA
ASTRO-G VLBA
15-hour observation with the VLBA
42
Required calibrator flux density
  • Image coherence loss as a function of SNR of a
    single calibrator ON-source duration
  • SNR5 coherence loss of less than 2
  • SNR4 coherence loss of 2-4
  • SNR3 coherence loss of about 10
  • Required calibrator flux density for SNR of 4
    (with a VLBA antenna, ON-source duration of 20 s,
    and BW of 256MHz)
  • 8.4 GHz 63 mJy
  • 22GHz 84 mJy
  • 43GHz 154 mJy

43
VCS (VLBA Calibrator Survey)
  • Catalogues VCS1, VCS2, VCS3, VCS4, VCS5, and
    2005f_astro.
  • UV FITS files and text catalogue file are
    available via internet
  • http//vlbi.gsfc.nasa.gov/solutions/2005f_astro/
  • http//www.vlba.nrao.edu/astro/calib/vlbaCalib.txt
  • Sizes and strengths of the VCS sources are
    estimated by Gaussian fitting.

44
Basic Ideas to Estimate Flux Densities at 8.4,
22, 43 GHz with a Space Baseline
  • F F0(?) exp-2(pD?s(?))2
  • Flux density F0(?) ??-a
  • Size s(?) ??-ß

45
Basic Ideas to Estimate Flux Densities at 8.4,
22, 43 GHz with a Space Baseline
  • F F0(?) exp-2(pD?s(?))2
  • Flux density F0(?) ??-a
  • a log(Fx)-log(Fs) / log(?s)-log(?x)
  • ? explog(Fx)log(?s)-log(Fs)log(?x) /
    log(?s)-log(?x)
  • Size s(?) ??-ß
  • ß log(sx)-log(ss) / log(?s)-log(?x)
  • ? explog(sx)log(?s)-log(ss)log(?x) /
    log(?s)-log(?x)
  • If ss0 or sx0, s(?)sx.

46
Examples of the Gaussian Fitting(J10330711)
X-band
S-band
47
Calibrator Candidate Distribution Estimated from
the VCS
8.4GHz gt 60 mJy 22GHz gt 80 mJy 43GHz
gt 150 mJy
8.4GHz lt 5 22GHz lt 3 43GHz
lt 2
48
VCS Monte Carlo Simulation(Northern Sky)
49
Comments
50
Comments 1/3
  • VLBI Phase Referencing Astrometry Simulations
  • ARIS AIPS
  • Characteristic Space-VLBI Phase Errors with
    ASTRO-G
  • Attitude error (pointing error)
  • OD error ? baseline vector error

51
Comments 2/3
  • VSOP-2 astrometry will be twice or more accurate
    than astrometric observations with ground VLBI
    arrays for a complete point target
  • With less than 10-cm OD accuracy
  • With effective atmospheric EPL errors

52
Comments 3/3
  • A careful preparation will be needed for each
    target especially at 22 and 43 GHz in terms of
    the calibrator.
Write a Comment
User Comments (0)
About PowerShow.com