Title: VSOP2 Astrometry: Astrometric Accuracy Made with Phase Referencing
1VSOP-2 Astrometry Astrometric Accuracy Made with
Phase Referencing
- Yoshiharu Asaki (ISAS)
- (VSOP-2 Symposium, Dec 3-7, 2007)
2Outline
- Background
- VLBI Observation Simulation Software
- VSOP-2 Phase Referencing Simulations
- Astrometric Accuracy
- Calibrator Candidate
- Comments
3Background
4VLBI Phase Referencing Astrometry Era
5Galactic Water Maser Source, S Per
Asaki et al., IAUS-242, 2007
6Galactic Water Maser Source S Per(relative
position to a continuum source, KR 143)
Asaki et al., IAUS-242, 2007
7Galactic Water Maser Source S Per(relative
position to a continuum source, KR 143)
Asaki et al., IAUS-242, 2007
8S Per Annual Parallax 0.399 0.014
mas?Distance2.51 0.09 kpc
Asaki et al., IAUS-242, 2007
9VERA VLBI Phase Referencing Astrometry
(Oral talk given by M. Honma, and several poster
presentations downstairs)
10VSOP-2Phase Referencing
11VLBI Observation Simulation Software
12Simulation Investigations for VLBI Phase
Referencing Astrometry
- Pradel et al. 2006, AAp, 452, 1099
- VLBA, EVN, VLBAEVN
- Asaki et al. 2007, PASJ, 59, 397
- VSOP-2
13Astronomical Radio Interferometer Simulator (ARIS)
- VLBI Phase Referencing Simulation
- Error sources
- Space-VLBI Observation Simulations
- Orbit determination (OD) errors
- Attitude control errors
- Operation satellite tracking schedule
14Simulated Fringe with ARIS
Before Phase Referencing
After Phase Referencing
15Characteristic Phase Errors related to ASTRO-G
- Pointing Error
- Attitude error and telescope optics design
- Antenna Position Error
- Orbit determination (OD)
16Delay Error Related to the Attitude
Wave Front
Right Attitude
17Delay Error due to the Attitude Error
Wave Front
Right Attitude
Pointing Error
18Delay Error due to the Attitude Error
Wave Front
Right Attitude
Pointing Error
19Attitude Error ? Delay Error
- Specification of Pointing Requirement lt 5/1000
20Attitude Error ? Delay Error
- Specification of Pointing Requirement lt 5/1000
21OD Error Model
cross track
True Trajectory
along track
OD
radial
22OD Error Model
- Tracking Stations
- Red ISAS, Usuda
- Yellowish green NRAO, Green Bank
- Blue DSN, Robled
- Light blue DSN, Tid
- Pink DSN, Goldstone
- Arrow Displacement vector of the satellite
position.
23OD Error Model for ASTRO-G(Typical Profile)
24OD Error Model for ASTRO-G(Typical Profile)
Apogee
Apogee
Perigee
Perigee
Perigee
25Before Phase Referencing(Pointing Error OD
Error)
Observation Frequency 43GHz Pointing Error (3s)
5/1000 OD Error 4cm at apogee, 1cm at
perigee
Target Calibrator
26After Phase Referencing(Pointing Error OD
Error)
Observation Frequency 43GHz Pointing Error (3s)
5/1000 OD Error 4cm at apogee, 1cm at
perigee
27VSOP-2 Phase Referencing Simulations
28Simulation Conditions
- Array
- VLBA (NRAO) ASTRO-G
- GRTs lowest elevation 20 deg
- Switching Cycle Time 60 sec
- Observation Time
- 15 hours (2 orbital periods of ASTRO-G)
- Target Calibrator
- Point sources
- Total Flux Density 1 Jy
- Declination 59
- Tropospheric Turbulence
- Stable condition for 43-GHz observations
- Typical condition for 22- and 8-GHz observations
29Simulation Conditions
- Array
- VLBA (NRAO) ASTRO-G
- GRTs lowest elevation 20 deg
- Switching Cycle Time 60 sec
- Observation Time
- 15 hours (2 orbital periods of ASTRO-G)
- Target Calibrator
- Point sources
- Total Flux Density 1 Jy
- Declination 59
- Tropospheric Turbulence
- Stable condition for 43-GHz observations
- Typical condition for 22- and 8-GHz observations
30Simulation Conditions
- Array
- VLBA (NRAO) ASTRO-G
- GRTs lowest elevation 20 deg
- Switching Cycle Time 60 sec
- Observation Time
- 15 hours (2 orbital periods of ASTRO-G)
- Target Calibrator
- Point sources
- Total Flux Density 1 Jy
- Declination 59
- Tropospheric Turbulence
- Stable condition for 43-GHz observations
- Typical condition for 22- and 8-GHz observations
31Simulation Conditions
- Array
- VLBA (NRAO) ASTRO-G
- GRTs lowest elevation 20 deg
- Switching Cycle Time 60 sec
- Observation Time
- 15 hours (2 orbital periods of ASTRO-G)
- Target Calibrator
- Point sources
- Total Flux Density 1 Jy
- Declination 59
- Tropospheric Turbulence
- Stable condition for 43-GHz observations
- Typical condition for 22- and 8-GHz observations
32Simulation Conditions
- Array
- VLBA (NRAO) ASTRO-G
- GRTs lowest elevation 20 deg
- Switching Cycle Time 60 sec
- Observation Time
- 15 hours (2 orbital periods of ASTRO-G)
- Target Calibrator
- Point sources
- Total Flux Density 1 Jy
- Declination 59
- Tropospheric Turbulence
- Stable condition for 43-GHz observations
- Typical condition for 22- and 8-GHz observations
Not Included
33ON-source Time for ASTRO-G and the VLBA
VLBA
ASTRO-G
VLBA
2 separation 60-s switching cycle
ASTRO-G
34Typical (u, v) Coverage(2 pair, 43 GHz)
Target Calibrator
35ARIS AIPSImaging Simulations
0.5 separation 2-cm OD Error
- ARIS (Fringe Generation)
- Phase Referencing
- FITS-IDI save
- AIPS (Image Synthesis)
- FITS-IDI load
- No Calibration
- CLEAN
Synthesized Image with AIPS ?
36ARIS AIPSImaging Simulations
0.5 separation 2-cm OD Error
- ARIS (Fringe Generation)
- Phase Referencing
- FITS-IDI save
- AIPS (Image Synthesis)
- FITS-IDI load
- No Calibration
- CLEAN
Synthesized Image with AIPS ?
37Astromertric Accuracyin this study
Synthesized Image
Astrometric Accuracy E ( r )
r
Declination
The point source model position
The brightest position of a synthesized image
Right Ascension
38OD Error Tropospheric EPL Bias Error
39OD Error (apogee) 2cm, 4cm, 8cm, 16cm, 32cm
EPL Bias Error 4cm (1s)
8GHz
22GHz
43GHz
VLBA
EPL Bias Error 2cm (1s)
40Q-band CLEAN Image
Q-band CLEAN Image (no VLBI error, no noise)
VLBA
ASTRO-G VLBA
Model
15-hour observation with the VLBA
41Q-band CLEAN Image
Q-band CLEAN Image (no VLBI error, no noise)
VLBA
ASTRO-G VLBA
15-hour observation with the VLBA
42Required calibrator flux density
- Image coherence loss as a function of SNR of a
single calibrator ON-source duration - SNR5 coherence loss of less than 2
- SNR4 coherence loss of 2-4
- SNR3 coherence loss of about 10
- Required calibrator flux density for SNR of 4
(with a VLBA antenna, ON-source duration of 20 s,
and BW of 256MHz) - 8.4 GHz 63 mJy
- 22GHz 84 mJy
- 43GHz 154 mJy
43VCS (VLBA Calibrator Survey)
- Catalogues VCS1, VCS2, VCS3, VCS4, VCS5, and
2005f_astro. - UV FITS files and text catalogue file are
available via internet - http//vlbi.gsfc.nasa.gov/solutions/2005f_astro/
- http//www.vlba.nrao.edu/astro/calib/vlbaCalib.txt
- Sizes and strengths of the VCS sources are
estimated by Gaussian fitting.
44Basic Ideas to Estimate Flux Densities at 8.4,
22, 43 GHz with a Space Baseline
- F F0(?) exp-2(pD?s(?))2
- Flux density F0(?) ??-a
- Size s(?) ??-ß
45Basic Ideas to Estimate Flux Densities at 8.4,
22, 43 GHz with a Space Baseline
- F F0(?) exp-2(pD?s(?))2
- Flux density F0(?) ??-a
- a log(Fx)-log(Fs) / log(?s)-log(?x)
- ? explog(Fx)log(?s)-log(Fs)log(?x) /
log(?s)-log(?x) - Size s(?) ??-ß
- ß log(sx)-log(ss) / log(?s)-log(?x)
- ? explog(sx)log(?s)-log(ss)log(?x) /
log(?s)-log(?x) - If ss0 or sx0, s(?)sx.
46Examples of the Gaussian Fitting(J10330711)
X-band
S-band
47Calibrator Candidate Distribution Estimated from
the VCS
8.4GHz gt 60 mJy 22GHz gt 80 mJy 43GHz
gt 150 mJy
8.4GHz lt 5 22GHz lt 3 43GHz
lt 2
48VCS Monte Carlo Simulation(Northern Sky)
49Comments
50Comments 1/3
- VLBI Phase Referencing Astrometry Simulations
- ARIS AIPS
- Characteristic Space-VLBI Phase Errors with
ASTRO-G - Attitude error (pointing error)
- OD error ? baseline vector error
51Comments 2/3
- VSOP-2 astrometry will be twice or more accurate
than astrometric observations with ground VLBI
arrays for a complete point target - With less than 10-cm OD accuracy
- With effective atmospheric EPL errors
52Comments 3/3
- A careful preparation will be needed for each
target especially at 22 and 43 GHz in terms of
the calibrator.