Title: DPG Vortrag in Berlin Maerz 2005
1Three roads to neutrino masses
or evidence?
complementary
or evidence?
2Absolute Neutrino Mass MeasurementsBeate
Bornschein
- Lecture I
- Introduction
- Electron neutrino mass measurements - methods
- Status at the begin of the 3rd millennium
sensitivity 0.2 eV/c2
3Absolute Neutrino Mass MeasurementsBeate
Bornschein
- Lecture II
- Future of Re experiments MARE
- Fixing the neutrino mass scale with KATRIN
- Summary Perspectives
sensitivity 0.2 eV/c2
4Absolute neutrino masses ---Particle Data Group
5Absolute neutrino masses PDG (May 2006)
6Absolute neutrino masses the traditional way
m(ne) tritium ß-decay 3H ? 3He e- ne
m(nµ) pion-decay p ? µ nµ
m(nt) tau hadr. decay t ? 5p nt
kinematic phase space studies
m(nm) lt 190 keV (PDG2006)
m(nt) lt 18.2 MeV (PDG2006)
m(ne) lt 2 eV (PDG2006)
7Neutrino oscillations linking ?-masses
n-mass offset?
8Absolute neutrino masses the traditional way
m(ne) tritium ß-decay 3H ? 3He e- ne
m(nµ) pion-decay p ? µ nµ
m(nt) tau hadr. decay t ? 5p nt
kinematic phase space studies
neutrino oscillations with large mixing angles -
all ?-masses are linked to lightest by
oscillations
m(nm) lt 190 keV (PDG2006)
m(nt) lt 18.2 MeV (PDG2006)
m(ne) lt 2 eV (PDG2006)
9Absolute neutrino masses the traditional way
m(ne) tritium ß-decay 3H ? 3He e- ne
m(nµ) pion-decay p ? µ nµ
m(nt) tau hadr. decay t ? 5p nt
kinematic phase space studies
Therefore, concentration on m(?e), especially
?-decay experiments
m(nm) lt 190 keV (PDG2006)
m(nt) lt 18.2 MeV (PDG2006)
m(ne) lt 2 eV (PDG2006)
10A short step into the past
- myon neutrino mass
- tau neutrino mass
11Myon neutrino mass
Principle
Three different quantities needs to be measured
with very high precision Done in three different
experiments!
12Myon neutrino mass
- Measurement of , with CPT theorem
- Pionic atom negative pion is stopped in
matter and captured by an atom. - Example Measurement of the 4f-3d transition in
pionic 24Mg with a crystal spectrometer - Measurement of
-
Jeckelmann et al., PhysLettB335 (1994)326
Mohr and Taylor, CODATA, RevModPhys 77 (2005)
13Myon neutrino mass
- Measurement of at Paul-Scherrer
Institute (PSI) -
Assamagan et al., PhyRevD 53 (1996)6065
14Setup at PSI
Assamagan et al., PhyRevD 53 (1996)6065
15Different neutrino mass states ?i
16Myon neutrino mass
PDG2006
PDG2006
17Tau neutrino mass
- Method
-
- ? Hadronic system is composed of 3, 5 or 6
pions - ? In tau rest frame energy of hadronic
system is fixed -
- ? m?(?) can computed for given values of mh
and Eh - ? mh and Eh are determined from the
measured momenta of the particles - composing the hadronic system
18Tau neutrino mass ALEPH collaboration
Barate et al., Eur. Phys. J. C2 (1998)395
19Tau neutrino mass
PDG2006
(23 entries )
20Absolute neutrino masses the traditional way
m(ne) tritium ß-decay 3H ? 3He e- ne
m(nµ) pion-decay p ? µ nµ
m(nt) tau hadr. decay t ? 5p nt
kinematic phase space studies
Therefore, concentration on m(?e), especially
?-decay experiments
m(nm) lt 190 keV (PDG2006)
m(nt) lt 18.2 MeV (PDG2006)
m(ne) lt 2 eV (PDG2006)
21Electron neutrino mass - again a look into PDG2006
22Neutrino mass from SN1987A
Time of flight measurement
SN1987A
L ? 1.5 1018 km ? 1.6 105 light years
One neutrino with m, E (m2 ltlt E2)
Two neutrinos with m, E1, E2
23Neutrino mass from SN1987A
Time of flight measurement
One neutrino with m, E
Two neutrinos with m, E1, E2
Dependent on SN model !
24Neutrino mass from SN1987A results
PDG2006
- T.J. Loredo et al., PRD65 (2002) 063002, 39 pp
- improved SN model
- improved data modeling
25Neutrino mass from SN20xx ???
- Actually no competition with ?-decay experiments
- not sensitive to sub-eV neutrino masses
(uncertainty in emission time at SN) - galactic SN only expected every 40 years
26- ß-decay and neutrino mass
27ß-decay and neutrino mass
kinematic measurement of electron neutrino mass
m(ne)
28ß-decay and neutrino mass
kinematic measurement of electron neutrino mass
m(ne)
scaling in ß-decay experimental observable
is mn2
n-mass eigenstates mi too close to be resolved
experimentally with DE 1 eV for single
electrons at ß-decay endpoint
- ß-decay ?-oscillation experiments allow to
fully reconstruct - mass eigenstates mj as ?-oscillations provide
Uei and ?m2ij
29ß-decay and neutrino mass
kinematic measurement of electron neutrino mass
m(ne)
E0 18.57 keV T1/2 12.3 y superallowed
3H
- ß-source requirements
- high ß-decay rate
- low ß-endpoint energy E0
- no strongly forbidden transition
- , see further discussion,
- dependent on experiment
E0 2.47 keV T1/2 43.2 Gy unique 1st forbidden
187Re
calorimeter source detector
- ß-detection requirements
- - high resolution (DElt few eV)
- - large solid angle (DW 2p)
- - low background
spectrometer source ? detector
30Based on Andrea Giuliani, MARE collaboration
31Tritium ß-decay experiment
3H ? 3He e- ?e with E018.6 keV
Measurement of T2 ß-decay spectrum in the region
around the endpoint E0
32Why tritium?
recoil energy and excitation neglected
Fermi function
nuclear matrix element
Tritium E0 18.6 keV, TH 12.3
a
- Superallowed transition ? matrix element M is
not energy dependent - Low endpoint energy ? relative decay
fraction at the endpoint is
comparatively
high - Short half life ? specific activity
is high
? low amount of source material
? low
fraction of inelastic scattered electrons - Hydrogen isotope ? simple atomic
shell
? final states precisely calculable
33Tritium ß-decay experiment basic requirements
- very high energy resolution
- very high luminosity
- L ASeff ??/4?
- - large source area
- - large accepted solid angle
- high ?-decay rate
- very low background
Best solution tritium source combined with MAC-E
filter
34Principle of an electrostatic filter
withmagnetic adiabatic collimation (MAC-E)
- MAC-E Filter
- adiabatic guiding of ? particles along the
magnetic field lines - large accepted solid angle
- ?? ? 2?
- inhomogen B-Field
- adiabatic transformation
35Principle of an electrostatic filter
withmagnetic adiabatic collimation (MAC-E)
- MAC-E Filter
- adiabatic guiding of ? particles along the
magnetic field lines - large accepted solid angle
- ?? ? 2?
- inhomogen B-Field
- adiabatic transformation
- electrostatic retarding field
- high pass filter !
- ?E Bmin/Bmax E0
36Principle of an electrostatic filter
withmagnetic adiabatic collimation (MAC-E)
- MAC-E Filter
- adiabatic guiding of ? particles along the
magnetic field lines - large accepted solid angle
- ?? ? 2?
- inhomogen B-Field
- adiabatic transformation
- electrostatic retarding field
- high pass filter !
- ?E Bmin/Bmax E0
37Principle of a MAC-E filter II
- MAC-E Filter - method
- Scanning ß spectrum and background region by
varyingspectrometer voltage U0 - All ß electrons with an energy higher than the
filter energy eU0 accepted and counted - Measuring time per data pointis experiment
specificTypical values 20 to 60 s per voltage
set
-eU0
E0
38Principle set-up of a tritium ?-decay experiment
39The Mainz neutrino mass experiment (1997-2001)
- Detector
- 5 segments
- silicon
- Molecular T2 source
- T2 film at 1.9 K
- Quench condensed on graphite (HOPG)
- d ? 480Å (140 ML) A 2 cm2
- 20 mCi activity
- Spectrometer
- 23 ring electrodes
- 4.8 eV resolution
- L 4 m, Ø 1 m
- Vacuum better 10-10 mbar
QCTS Quench Condensed Tritium
Source
40The Mainz neutrino mass experiment (1997-2001)
KATRIN 2006
Mainz neutrinogroup 2001 J. Bonn
B. Bornschein L. BornscheinB.
FlattCh. KrausB. Müller E.W. OttenJ.P.
SchallTh. ThümmlerCh. Weinheimer ? FZ K
U Karlsruhe ? U Münster
41Source systematics
- Quench Condensed Tritium Source QCTS, before
1997 - Source temperature 4.2K, 2.8 K
- Roughening transition !
- Increased energy loss
Investigation of source effect in Mainz Entering
the solid state physics
42Stray light measurements
43Results of stray light measurements
- Fleischmann et al. Eur. Phys. J. B 16
(2000) 521 - Model of surface diffusion
- ?t ?t0 ? exp(? W / kT)
- (Arrhenius-law)
- ?t characteristic dewetting time
- ?W activation energy
- Dewetting time ?t (T1.9 K) gt 1.2 a (95 C. L.)
- ? long term measurements are possible with
quench condensed tritium films if Tlt
1.9 K
?t
44Source systematics negative mass squares
- Quench Condensed Tritium Source QCTS, before
1997 - Source temperature 4.2K, 2.8 K
- Roughening transition !
- Increased energy loss
45Underestimated energy loss the most often
reason for negative mass squares
If we have underestimated or just missed some
energy loss mechanism, then the fit finds a too
low endpoint which shifts the squared neutrino
mass towards negative values (count rate above
the endpoint)
46Results of neutrino mass measurements of last 2
decades
- Long series of tritium ?-decay experiments
- Problem of negative mass squares disappeared
due to better understanding of systematic effects
- Troitsk
- Gaseous tritium source (WGTS)
- Mainz
- Quench condensed tritium source (QCTS)
47QCTS - investigations of systematic effects
? Roughening transition of T2 film
? Inelastic scattering
Determination of cross sectionstot
(2.980.16) 10-18 cm2 Det. of energy loss
function V.N. Aseev et al., Eur. Phys.J. D10
(2000) 39
- Determination of dynamics ?E (456) kBK
- no roughening transition below 2 K
- L. Fleischmann et al., J. Low Temp. Phys. 119
(2000) 615,L. Fleischmann et al., Eur. Phys. J.
B16 (2000) 521
? Self-charging of T2 film
? Long time behavior of T2 film
Rest gas condensation evaporation gtEffect
limits measurement time
Determination of critical field Ecrit (634)
MV/mgt slight broadening of energy resolution H.
Barth et al., Prog. Part. Nucl. Phys. 40 (1998)
353B. Bornschein et al., J. Low Temp. Phys. 131
(2003) 69
48Self-charging of QCTS
- First hint
- shift of the ß-endpoint
- energy (1997)
- Idea
- Charging of the tritium
- film (40 mCi 1.5E9 electrons/s)
?Measurement with Kr-83m conversion
electrons
49Time dependencyof charging
Assumption tritium ß-decay existence of
critical field
50Result of measurement
Steady state is characterized by a practically
constant, critical electric field strength Ecrit
62 MV/m 20mV/monolayer over the film,
at which the residual positive charges attain
sufficient mobility to penetrate the film towards
the conducting substrate.
ß-spectroscopy Limits either resolution (in case
of thick films) or count rate (in case of thin
films). Reason for using gaseous source in KATRIN
experiment!
B. Bornschein et al., J. Low Temp. Phys. 131
(2003) 69
51Results of Mainz experiment (1998/1999 2001)
52Results of Mainz experiment
Data of 20 weeks run time added for evaluation
With neighbour excitation from calculation
(Kolos et al., Phys. Rev. A37 (1988)
2297) m2(n) -1.2 2.2 2.1 eV2 Þ m(n)
lt 2.2 eV (95 C.L.) Ch. Weinheimer, Nucl.
Phys. B (Proc. Suppl.) 118 (2003) 279, C.
Kraus et al., Nucl. Phys. B (Proc. Suppl.)
118 (2003) 482 Neighbour excitation fitted from
own data m2(n) -0.6 2.2 2.1 eV2
Þ m(n)lt 2.3 eV (95 C.L.) C. Kraus et al.,
Eur. Phys. J. C40 (2005) 447
PDG2006
53Troitsk neutrino mass experiment
Windowless Gaseous Tritium Source MAC-E Filter
Dominant systematic uncertainty Energy loss due
to inelastic scattering of decay electrons
54Troitsk setup
- WGTS
- 26-28 K
- L3 m, Ø 5 cm
- T2HTH2 682
- column density 1017cm-2
- Spectrometer
- 3 ring lectrodes
- 3.5 eV resolution
- L6 m, Ø1.2 m
- P 10-9 mbar
55Troitsk setup
56Troitsk Anomaly
- Observation of an excess count rate (step)
close to the endpoint (equivalent to a mono
energetic line in original ß-spectrum) - Location 5 15 eV below E0, intensity 10-10
of total T2-decay rate - Periodicity 0.5 years ?
57Troitsk Results
- Strong correlation between step parameters
(anomaly) and m?2 - Requires description of anomaly
phenomenologically by adding 2 additional
fit parameters (standard E0, m2, Amp, Bg) - step_position, step_amplitude
- 1994-98 results (6 parameter fit)
- m?2 -1.9 3.4 2.2 eV2/c4 gt m? lt 2.5
eV/c2 (95 C.L.) - V. Lobashev et al., Phys.
Lett. B 460 (1999) 227 - 1994-99/01 results (6 parameter fit)
- m?2 -2.3 2.5 2.0 eV2/c4 gt m? lt 2.2
eV/c2 (95 C.L.) - V. Lobashev, Proceedings 17th
International Conference on Nuclear Physics in
Astrophysics,
Debrecen/Hungary, 2002, Nucl. Phys. A 719 (2003)
153
PDG2006
58Coincident measurements in Troitsk and Mainz
- Mainz results
- No significant change of ?2
- gt no indication of an anomaly
- Troitsk anomaly is very likely an experimental
artefact which is not present in Mainz
59PDG2006
60Electron neutrino mass
PDG2006
61Absolute Neutrino Mass MeasurementsBeate
Bornschein
- Lecture II
- Future of Re experiments MARE
- Fixing the neutrino mass scale with KATRIN
- Summary Perspectives
sensitivity 0.2 eV/c2
62Additional transparencies
63Model for charging
- electrons are leaving the T2 film
- pos. Ions are remaining in the film
- need charge compensating current
from/to substrate - mobility of charges
- proportional to
- exp (-W/kT)
- T lt 2 K ? no mobility!
- Charging
- additional el. Field
- movement of charges at Ecrit