University of Portsmouth - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

University of Portsmouth

Description:

2nd Assessor: Dr. A. Osbaldestin. 2. Aim. To study some numerical methods in their classical and barycentric form such as: Lagrange ... – PowerPoint PPT presentation

Number of Views:865
Avg rating:3.0/5.0
Slides: 24
Provided by: userweb
Category:

less

Transcript and Presenter's Notes

Title: University of Portsmouth


1
  • University of Portsmouth
  • Department of Mathematics
  • Project Presentation
  • Barycentric representation of some interpolants
    Theory and numerics.
  • By Maria Apostolou
  • Supervisor Dr. A. Makroglou
  • 2nd Assessor Dr. A. Osbaldestin

2
Aim
  • To study some numerical methods in their
    classical and barycentric form such as
  • Lagrange
  • Rational
  • To implement some of them numerically.
  • The MATLAB package has been used for programming.

3
Outline of the Talk
  • 1. Interpolation problem.
  • 2. Lagrange interpolation.
  • 3. Barycentric representation
  • 3.1 Lagrange type
  • 3.2 Linear rational type
  • 4. Numerical results
  • 5. Conclusions.
  • 6. Further Research.

4
References
  • The main references are
  • Berrut, J. P. and Mittelmann, H. D., Lebesgue
    Constant Minimizing Liner Rational Interpolation
    of Continuous Functions over the Interval,comp.
    Maths applic. , 33 (1997), 77-86.
  • 2) Salzer, H. E., Lagrangian interpolation at the
    Chebyshev points Xn,v ? cos (v?/n), v 0(1)n
    some unnoted advantages, The Computer Journal, 15
    (1972), 156-159.
  • 3) Werner, W., Polynomial interpolation
    Lagrange versus Newton, Mathematics of
    Computation, vol. 43 (1984), 205-217.
  • 4) Hahn, B. D. Essential MATLAB for Scientists
    and Engineers, Arnold, 1997.

5
1. Interpolation problem
  • One of the types of approximation methods is the
    interpolation.
  • The problem of interpolation for one dimensional
    data can be stated as follows given a set of
    data of the form (xi, yi), i 0, 1, . . ., n
    where the xi are distinct, find a function say
    p(x) such that p(xi) yi, i 0, 1, . . ., n.
  • Quite often the interpolation function is a
    polynomial such as Lagrange, Newton and Neville.
  • A well known problem of polynomial interpolation
    is that when used with a large number of
    equidistant points xi, the errors at points close
    to the end points of the interval of
    consideration grow catastrophically.

6
2. Lagrange interpolation
  • -One approach to the interpolation problem is the
    Lagrange method.
  • The Lagrange form is

  • (2.1)
  • where

7
3. Barycentric representation3.1 Lagrange type
  • The Lagrange type barycentric formula is
  • ,
  • Proof.
  • Since

8
  • the Lagrange interpolation polynomial can be
    written
  • Let
  • So we rewrite lj as

9
  • Thus

  • (4.1)
  • We divide both nominator and denominator by

10
  • So (4.1) became

  • (4.2)
  • So (4.2) became

11
Advantage of the Lagrange barycentric form
  • The main advantage of the barycentric form
    is related to improvements in the numerical
    stability of the Lagrange interpolation process.
    The main reason for this improvement is reported
    in Werner (1984, p.210) to be the fact that even
    if the weights Aj are not computed very
    accurately, the barycentric formula continues to
    be an interpolating formula .

12
3.2 Linear rational type
  • The form of the linear rational interpolant of
    barycentric form is
  • The constants uk are chosen so that the Lebesgue
  • constant
  • is minimized under the constrains

13
4. Numerical results - Table1
  • The results for the function yexp(-x2) using
    classical
  • Lagrange with equidistant points fon n 21
  • are xval function values comp. value abs errors
  • -0.950 0.40555451 0.40555278
    1.723e-006
  • -0.750 0.56978282 0.56978272
    1.002e-007
  • -0.550 0.73896849 0.73896849
    3.123e-009
  • -0.350 0.88470590 0.88470590
    3.307e-011
  • -0.150 0.97775124 0.97775124
    2.698e-014
  • 0.150 0.97775124 0.97775124
    1.110e-016
  • 0.350 0.88470590 0.88470590
    3.531e-014
  • 0.550 0.73896849 0.73896849
    1.641e-012
  • 0.750 0.56978282 0.56978282
    1.758e-010
  • 0.950 0.40555451 0.40555451
    5.392e-009

14
Numerical results Table2
  • The results for the function yexp(-x2) using
    classical
  • Lagrange with chebyshev points fon n 21
  • are xval function values comp. value abs errors
  • -0.950 0.40555451 0.40555457
    6.070e-008
  • -0.750 0.56978282 0.56978283
    1.544e-009
  • -0.550 0.73896849 0.73896849
    2.786e-011
  • -0.350 0.88470590 0.88470590
    1.312e-012
  • -0.150 0.97775124 0.97775124
    1.033e-014
  • 0.150 0.97775124 0.97775124
    8.882e-016
  • 0.350 0.88470590 0.88470590
    6.661e-016
  • 0.550 0.73896849 0.73896849
    2.849e-013
  • 0.750 0.56978282 0.56978282
    5.472e-012
  • 0.950 0.40555451 0.40555450
    1.016e-010

15
Numerical results Table3
  • The results for the function yexp(-x2) using
    barycentric with
  • equidistant points for n 21
  • are xval function values comp. value abs errors
  • -0.950 0.40555451 0.40555451
    2.262e-012
  • -0.750 0.56978282 0.56978282
    2.220e-014
  • -0.550 0.73896849 0.73896849
    8.882e-016
  • -0.350 0.88470590 0.88470590
    3.331e-016
  • -0.150 0.97775124 0.97775124
    0.000e000
  • 0.150 0.97775124 0.97775124
    0.000e000
  • 0.350 0.88470590 0.88470590
    2.220e-016
  • 0.550 0.73896849 0.73896849
    7.772e-016
  • 0.750 0.56978282 0.56978282
    1.910e-014
  • 0.950 0.40555451 0.40555451
    2.593e-012

16
Numerical results Table4
  • The results for the function yexp(-x2) using
    barycentric with
  • Chebychev points fon n 21
  • are xval function values comp. value abs errors
  • -0.950 0.40555451 0.40555451
    1.249e-014
  • -0.750 0.56978282 0.56978282
    9.437e-015
  • -0.550 0.73896849 0.73896849
    2.998e-015
  • -0.350 0.88470590 0.88470590
    4.885e-015
  • -0.150 0.97775124 0.97775124
    5.551e-016
  • 0.150 0.97775124 0.97775124
    1.110e-016
  • 0.350 0.88470590 0.88470590
    4.552e-015
  • 0.550 0.73896849 0.73896849
    2.665e-015
  • 0.750 0.56978282 0.56978282
    9.437e-015
  • 0.950 0.40555451 0.40555451
    1.255e-014

17
Numerical results - Table5
  • The results for the function yexp(-x2) using
    classical
  • Lagrange with Chebychev points fon n 101
  • are xval function values comp. value abs errors
  • -0.450 0.81668648 -8.91078343
    9.727e000
  • -0.350 0.88470590 0.88616143
    1.456e-003
  • -0.250 0.93941306 0.93941296
    9.892e-008
  • -0.150 0.97775124 0.97775124
    2.802e-012
  • -0.050 0.99750312 0.99750312
    1.010e-014
  • 0.050 0.99750312 0.99750312
    2.069e-011
  • 0.150 0.97775124 0.97626064
    1.491e-003
  • 0.250 0.93941306 -11403.06993416
    1.140e004
  • 0.350 0.88470590 -1057124943.27642430
    1.057e009

18
Numerical results Table6
  • The results for the function yexp(-x2) using
    barycentric with
  • Chebychev points fon n 101
  • are xval function values comp. value abs errors
  • -1.000 0.36787944 0.36787944
    1.665e-016
  • -0.800 0.52729242 0.52729242
    2.220e-016
  • -0.600 0.69767633 0.69767633
    5.551e-016
  • -0.400 0.85214379 0.85214379
    1.110e-016
  • -0.200 0.96078944 0.96078944
    4.441e-016
  • 0.000 1.00000000 1.00000000
    4.441e-016
  • 0.200 0.96078944 0.96078944
    1.110e-016
  • 0.400 0.85214379 0.85214379
    5.551e-016
  • 0.600 0.69767633 0.69767633
    2.220e-016
  • 0.800 0.52729242 0.52729242
    2.220e-016
  • 1.000 0.36787944 0.36787944
    0.000e000

19
Numerical results Table7
  • The results for the function y1/(125x2) using
    Classical
  • Lagrange with Chebychev points fon n 101
  • are xval function values comp. value abs errors
  • -0.350 0.24615385 -653263076.28299761
    6.533e008
  • -0.250 0.39024390 -5003.80824613
    5.004e003
  • -0.150 0.64000000 0.64080180
    8.018e-004
  • -0.050 0.94117647 0.94117647
    8.735e-010
  • 0.050 0.94117647 0.94117647
    8.546e-010
  • 0.150 0.64000000 0.64000000
    8.834e-010
  • 0.250 0.39024390 0.39024400
    9.680e-008
  • 0.350 0.24615385 0.24822379
    2.070e-003
  • 0.450 0.16494845 4.18889959
    4.024e000
  • 0.550 0.11678832 -68734.99358674
    6.874e004

20
Numerical results Table8
  • The results for the function y1/(125x2) using
  • barycentric with Chebychev points fon n 101
  • are xval function values comp. value abs errors
  • -1.000 0.03846154 0.03846154
    7.409e-010
  • -0.800 0.05882353 0.05882353
    5.050e-010
  • -0.600 0.10000000 0.10000000
    9.597e-010
  • -0.400 0.20000000 0.20000000
    1.019e-009
  • -0.200 0.50000000 0.50000000
    1.920e-009
  • 0.000 1.00000000 1.00000000
    4.441e-016
  • 0.200 0.50000000 0.50000000
    1.920e-009
  • 0.400 0.20000000 0.20000000
    1.019e-009
  • 0.600 0.10000000 0.10000000
    9.597e-010
  • 0.800 0.05882353 0.05882353
    5.050e-010
  • 1.000 0.03846154 0.03846154
    7.409e-010

21
5. Conclusions
  • Evaluating the results of the Tables 1, 2, 3 and
    4 for the
  • yexp(-x2) function when n 21 we notice that
    the errors with
  • the barycentric form are a lot more accurate than
    the
  • corresponding results with the Classical form.
  • Also we notice that the results for Chebyshev
    nodes
  • are more accurate that those with equidistant
    nodes as
  • expected.
  • The errors in Table 6 with n101 and Chebyshev
    nodes are
  • all of the order E-16, while the errors in Table
    5 (classical
  • Lagrange, n101, Chebyshev nodes) increase
    catastrophically
  • at points outside the interval -0.15, 0.15.

22
  • The errors in Table 8 with n101 and Chebyshev
  • nodes are all of the order E-10, E-09, while the
    errors
  • in Table 7 (classical Lagrange, n101, Chebyshev
  • nodes) increase catastrophically at points
    outside the
  • interval -0.15, 0.15.
  • So the general conclusion is that with respect to
    accuracy
  • and numerical stability the barycentric form of
    the Lagrange
  • interpolation method stays very accurate for
    large n (n1 the
  • number of points) and thus it should be used in
    all
  • applications where Lagrange interpolation is used
  • (Approximation theory, differential equations
    etc).

23
6. Further research
  • Ideas for further research may include
  • Exploring the application of the barycentric form
    to 2-dimensional data.
  • The computation of other types of interpolation
    methods using their barycentric form.
  • The use of barycentric approach when using
    interpolation in solving equations of various
    types.
Write a Comment
User Comments (0)
About PowerShow.com