Title: Metric spaces
1- Metric spaces
- Vectorial space, distance Pythagoras theorem
- Functional space, distance int f1(x) f2(x)ab
y
f1(x)
f2(x)
x
a
b
The functions that we will deal with belong to
functional metric spaces called Banach spaces
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9Signals can be represented as sums of simple
functions (some times of infinite number of
terms)
10It is useful to define a series of functions
11(No Transcript)
12Binomial distribution
13(No Transcript)
14Dirac Delta function (density)
15A particularly popular methods for representin
signal is FREQUENCY
16Discrete representations
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Continuous representation Fourier transform
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25Time and frequency are scaled In opposite ways
26(No Transcript)
27The fourier transform of a gaussian is A nother
gaussian
28(No Transcript)
29The importance of windowing
30(No Transcript)
31(No Transcript)
32(No Transcript)
33Relationship Between cross correlation Function
and fourier transform
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)