Owen Kellett - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Owen Kellett

Description:

In general, the busy beaver problem is to find the most productive' Turing ... Some standard settings for the Busy Beaver Problem are: ... – PowerPoint PPT presentation

Number of Views:129
Avg rating:3.0/5.0
Slides: 42
Provided by: owenke
Category:
Tags: beaver | kellett | owen

less

Transcript and Presenter's Notes

Title: Owen Kellett


1
Toward Conquering the?-Cracking (Busy Beaver)
Problempresenters OK, BvH, SB28 January 2004
  • Owen Kellett
  • Kyle Ross
  • Bram van Heuveln
  • Selmer Bringsjord
  • Kostas Arkoudas
  • Marc Destefano
  • Boleshaw Szymanski
  • Carlos Varela
  • Shailesh Kelkar
  • Department of Cognitive Science
  • Department of Computer Science (SB, Chair)
  • Rensselaer AI Reasoning (RAIR) Lab (SB,
    Director)
  • RPI Troy NY 12180 USA

2
The Rensselaer AI Reasoning Lab(The RAIR Lab)
Wargaming
? Cracking Project Intelligent Tutoring
Systems (mathematical logic)
Over 1million internal seeding
Slate (Intelligence Analysis)
Item generation (theorem proving-based generation)
synthetic characters/psychological time
3
The Busy Beaver ProblemGeneral Version
  • In general, the busy beaver problem is to find
    the most productive Turing machine with a given
    state and symbol set.
  • The productivity of a Turing machine can be
    defined in many ways
  • The number of symbols written
  • The number of steps taken
  • The number of cells moved away from the starting
    cell
  • The number of non-blank symbols on tape
  • Etc.
  • Note Non-halting machines will set almost any of
    these numbers to infinity, so non-halting
    machines will be excluded from consideration.

4
Standard Settings
  • Some standard settings for the Busy Beaver
    Problem are
  • The alphabet consists of a blank and a non-blank
  • The Turing Machine starts on an empty tape.
  • Productivity is the number of non-blank symbols
    left on the tape

5
Formalizing the Problem
  • n number of states
  • M(n) set of TMs with n states and binary
    alphabet
  • Prod(M) number of non-blank symbols left on tape
    by machine M, when started on empty tape.
  • Busy Beaver Problem Find BB(n) max Prod(M)
    M ? M(n)
  • Any machine M ? M(n) for which Prod(M) BB(n) is
    called a Busy Beaver.
  • Rado defined the problem and proved that BB(n) is
    uncomputable (1962).
  • However, we can find individual values BB(n) for
    small n.

6
Variations of the Problem
  • We can still define a variety of Busy Beaver
    problems
  • Do we use quadruple or quintuple machines?
  • How does the machine come to a halt?
  • Are there any restrictions on the output
    configuration?
  • Standard configuration head positioned at
    leftmost 1 (non-blank) of consecutive string of
    1s on otherwise empty tape
  • Anything goes

quadruple formulation
quintuple formulation
explicit halt
implicit halt
7
Taxonomy of BB Problems
BB
Quintuples
Quadruples
Anything goes
Standard config.
Anything goes
?
?
Explicit Halt State
Explicit Halt State
Implicit Halt State
Explicit Halt State
Implicit Halt State
?
B(n) (Boolos Jeffrey, Turings World)
R(n)
P(n) (Pereira et al.)
O(n) (Oberschelp et al.)
?(n) (Rado)
8
Previous Known Results
9
Problems in determining BB(n)
  • Turing unsolvable
  • Large search space
  • Implicit halt M(n)(4n1)2n
  • Explicit halt M(n)(4n4)2n
  • 4 possible actions for each of n next states
  • For implicit machines 1 no-action transition to
    halt-state
  • For explicit machines 4 possible actions to
    halt-state
  • 2n possible transitions

10
Inefficiency Isomorphisms
11
Inefficiency Unused Transitions
12
Solution Tree Normalization
13
Solution Tree Normalization
14
Solution Tree Normalization
15
Improvement from Normalization
16
Inefficiency Empty Tape Machine
  • machine reaches an empty tape after 1 or more
    shifts
  • any machine that does not write 1 as its first
    action is such a machine

17
(Partial) Solution Force First Write
18
(Partial) Solution Force First Write
19
Inefficiency Mirror Machines
20
Solution Force First Move
21
Solution Force First Move
22
Solution Force First Move
23
Solution Force First Move
24
Solution Force First Move
25
Improvement from Optimizations
26
Inefficiency Nonproductive Transitions
27
General Algorithm thus far
  • Begin with root machine (single state with no
    transitions) on stack
  • Initialize best machine as root machine
  • While stack is not empty
  • Pop machine m off of stack
  • If m is a non-halter, discard m and continue at
    the beginning of the loop
  • Run m until it halts
  • If m halts in the halt state (for the purposes of
    this algorithm we will consider an implicit
    machine to have a halt state where no action is
    performed when transitioning to it)
  • Compare ms productivity to best machine and
    update if necessary
  • Else
  • Generate ms children in the optimized fashion
    described
  • Push ms children onto the stack

Problem What if m is a non-halter?
28
Solution Non-halt detection
  • Step Limit
  • Run a machine for a fixed number of steps.
    Problem if it hasnt halted, it may still halt
    at some later point.
  • Also, Halting problem
  • There is no generalized algorithm that will take
    as input machine m and return whether or not m
    halts
  • Fortunately, algorithms can be designed to test
    for specific non-halting behaviors
  • By adding such detection routines to the
    tree-normalization algorithm from the previous
    slide, we obtain an algorithm A based is such
    that for any machine m
  • A eventually declares that m halts (m is a
    halter)
  • A eventually declares that m does not halt (m is
    a non-halter)
  • A eventually declares that it doesnt know
    whether m halts or not (m is a holdout)

29
Backtracking
q0x1 ? halt 10
q3x1 ? q0xL 113
q2x0 ? q3xR 021
101
013
Local tapes match, continue
Does not match! Non-halter!
30
Subset Loops
  • A Turing Machine M is classified as a subset loop
    if
  • There is a set of states S such that every
    possible transition from each state in S is
    defined
  • Every transition defined from a state in S is a
    transition to another state in S
  • During execution, at some point the machine
    enters one of the states in S

31
Simple Loops
  • A machine is classified as a simple loop if
    (given words of arbitrary length X, Y, V, and C
    and state s)
  • The following tape configuration is reached
    0YsXC0
  • -and one of the following-
  • 1 The same tape configuration is reached at a
    later point
  • -or-
  • 2 The following tape configuration is reached at
    a later point 0YsXVC0
  • Between these points, the read head never moves
    past the right edge of the initial X
  • The corresponding mirror of the above
    specification also identifies a simple loop
  •        0      State 0       1      State
    1       10     State 2       100    State
    3       1000   State 4       10000  State
    5       10000  State 5       10000  State
    5       10000  State 5       10000  State
    5      010000  State 3      010000  State
    4      010000  State 2      010000  State
    3      010000  State 1     0010000  State
    0     1010000  State 1     1010000  State
    2     1010000  State 3     1010000  State
    1     1010000  State 0    01010000  State
    4    01010000  State 5    01010000  State
    3    01010000  State 4    01010000  State
    2    01010000  State 3    01010000  State
    1   001010000  State 0   101010000  State
    1   101010000  State 2   101010000  State
    3   101010000  State 1   101010000  State 0

0 Y X C 0
0 Y X V C 0
32
Christmas Trees
  • In the general sense, a christmas tree non-halter
    sweeps back and forth across the tape in a
    repeatable manner

         1101010            State
1         1101010            State
2         1101010            State
0         1111010            State
1         1111010            State
2         1111010            State
0         1111110            State
1         1111110            State
2         1111110            State
0         1111111            State
1         11111110           State
2         11111110           State
3         11111110           State
0         11111010           State
3         11111010           State
3         11111010           State
0         11101010           State
3         11101010           State
3         11101010           State
0         10101010           State
3         10101010           State
3        010101010           State
0        110101010           State
1        110101010           State
2        110101010           State
0        111101010           State
1        111101010           State
2        111101010           State
0        111111010           State
1        111111010           State
2        111111010           State
0        111111110           State
1        111111110           State
2        111111110           State
0        111111111           State
1        1111111110          State 2
            0               State
0            1               State
1            10              State
2            10              State
3           010              State
0           110              State
1           110              State
2           110              State
0           111              State
1           1110             State
2           1110             State
3           1110             State
0           1010             State
3           1010             State
3          01010             State
0          11010             State
1          11010             State
2          11010             State
0          11110             State
1          11110             State
2          11110             State
0          11111             State
1          111110            State
2          111110            State
3          111110            State
0          111010            State
3          111010            State
3          111010            State
0          101010            State
3          101010            State
3         0101010            State 0
33
Christmas Trees
 11111110    State 2 11111110    State
3 11111110    State 0 11111010    State
3 11111010    State 3 11111010    State
0 11101010    State 3 11101010    State
3 11101010    State 0 10101010    State
3 10101010    State 3010101010    State
0110101010    State 1110101010    State
2110101010    State 0111101010    State
1111101010    State 2111101010    State
0111111010    State 1111111010    State
2111111010    State 0111111110    State
1111111110    State 2111111110    State
0111111111    State 11111111110   State 2
0UXXVs0
0UYYV0
0UZZV0

0UXXXV0
34
Leaning Christmas Trees
35
Multi-sweep Christmas Trees
  • The machine transforms the tape much like a
    normal Christmas tree, however, it takes more
    than one sweep across the tape to complete a cycle

Christmas Trees
Double-sweep Christmas Trees
0UXXXV0
0UXXXV0
0UYYYV0
0UYYYV0
0UZZZV0
0UZZZV0

0UXXXXV0
0UMMMV0
0UNNNV0

0UXXXXV0
36
Counters
0         State 01         State
110        State 2100       State
3101       State 0101       State
1101       State 1101       State
2101       State 3100       State
21000      State 31001      State
01001      State 11001      State
11001      State 11001      State
21001      State 31011      State
01011      State 11011      State
11011      State 21011      State
31001      State 21001      State
31000      State 210000     State 3
10001     State 010001     State
110001     State 110001     State
110001     State 110001     State
210001     State 310101     State
010101     State 110101     State
110101     State 210101     State
310001     State 210001     State
310011     State 010011     State
110011     State 110011     State
110011     State 210011     State
310111     State 010111     State
110111     State 110111     State
210111     State 310011     State 2
Note this machine generates binary numbers that
read from right to left rather than the
conventional left to right
37
Results non-halters
38
Updated Records
39
Future Work/Goals
  • Certification of our records (Athena)
  • Continued development of non-halt detection
    routines
  • Christmas tree variations
  • Counter variations (base 3, base 4, etc..)
  • With only 221 holdouts left, explicit
    confirmation of BB(5) is imminent
  • novel techniques for detecting non-halting
  • Additional tree normalization optimizations
  • Identical state machines?
  • Visual Reasoning (relates to new representations
    in support of novel non-halter detection)
  • Treat issues in Logico-Mathematical Foundations
  • Distributed computing (SALSA)
  • Working implementation using the developmental
    language SALSA to allow the potential for massive
    distributed computation

40
Visual Reasoning
  • The behavior of certain machines can sometimes be
    generalized by observing them in action.
  • Indeed, notice that we have named certain classes
    of machines, such as Christmas Trees, exactly
    by observing a graphical display of their
    bevhavior.
  • Maybe a system component can be created that can
    be used to reason about the behavior of a Turing
    machine based on a visual representation of (the
    behavior of) that Turing machine rather than a
    more traditional linear symbolic representation.

41
The Mathematical Landscape
Space of all information processes
Analog Chaotic Neural Networks, Zeus Machines,
Weyl Machines, P/Poly Machines,
Hypercomputation
engineering on the busy beaver?
The Turing Limit
Turing Machines, Algorithms, Programs,
Write a Comment
User Comments (0)
About PowerShow.com