Title: The Vital Chain: Steps in Oxygen Delivery
1The Vital ChainSteps in Oxygen Delivery
- Nicholas S. Hill MD
- Tufts Medical Center
- Boston, MA
2Disclosures
3Oxygen Essential to Aerobic Metabolism
- Lungs evolved to provide large, air conditioned,
thin surface area (size of tennis court) to bring
oxygen in contact with blood (and CO2 in blood
with air) - Cardiovascular system transports oxygen to
tissues where capillary bed, once again, provides
large surface area for diffusion so cells can be
oxygenated - Hemoglobin greatly enhances carrying capacity of
blood for oxygen
4Steps in Oxygen Delivery
1 PIO2
2 Ventilation
4 Circulation
5 Tissue Delivery
3 Gas Txfer
5First Step Ambient Air
- Inspired PO2 Barometric pressure (760 mm Hg)
Water vapor pressure (47 mm hg) X Fraction of
inspired O2 (.21) - At sea level, PIO2 150 mm Hg
- Rule of 7s Multiply FIO2 X 7 PIO2
- PIO2 is low if 1) PB is low (altitude) or
- 2) FIO2 is low
- Adaptations 1) Descend climb high, sleep low
2) Increase FIO2
6Second Step Ventilation
- Oxygen enters alveolus with ambient air
- (which is 79 nitrogen)
- Steady concentration of O2 maintained by flushing
CO2 at rate sufficient to match body metabolism - PaCO2 VO2 (CO2 production)/
- VA (alveolar ventilation)
- VA VE (minute ventilation) minus VD (dead space
ventilation)
.
7Ventilation
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
For Normal at Sea Level PAO2 150 1.25 X 40
100
f
PAO2 100 PACO2 40 mm Hg mm
Hg
CAPILLARY
PaO2 80-90, PaCO2 40
8Hypoventilation causes Hypoxia
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
Hypoventilation ? PaCO2 PAO2 150 1.25 X
64 70
f
PAO2 70 PACO2 64 mm Hg mm
Hg
Adaptation 1) ? ventilation 2) ? FIO2
CAPILLARY
PaO2 50-60, PaCO2 40
9Step 3 Gas Transfer
Gas Flow
O2
Alveoli
O2
10Step 3 Gas Transfer
SHUNT
Gas Flow
Little Response to O2 supplement
O2
Alveoli
O2
11Step 3 Gas Transfer
V/Q Mismatch
Responds to O2 supplement
Gas Flow
O2
O2
Alveoli
Hypoxic Vasoconstriction
12Step 3 Gas Transfer
V/Q Mismatch
Responds to O2 supplement
Gas Flow
O2
O2
Alveoli
13Step 3 Gas Transfer
Diffusion Abnormality
Depends on PAO2, Blood Velocity, Responds to O2
Supplement
Gas Flow
Alveoli
14Step 3 Gas Transfer
No direct Effect on PO2
Gas Flow
Dead Space
O2
Alveoli
O2
15Step 4 Circulation
- Cardiac Output Heart Rate X Stroke Volume nl
5-6 L/min - Oxygen Delivery CO X Arterial O2 Content
- Oxygen Consumption Arteriovenous O2 content
difference X cardiac output
16Step 4 Circulation
- O2 content O2 sat X 1.34 ml/gm hgb X gm hgb
0.03 ml O2/ ml blood - Diminished O2 Delivery Low CO or Anemia
- Adaptations 1) ? AV difference
- 2) ? CO
- 3) ? Hgb
17Step 5 Tissue Delivery
- Ability to deliver O2
- O2 Delivery
- Capillary O2 tension (Nl O2 sat 75)
- Density of capillaries
- Mitochondrial density
- Adaptations 1) ? O2 delivery, 2,3 DPG
- 2) ? Capillarity
- 3) ? Mitochondrial
density
18Stresses on O2 Pathway
- Exercise
- Respiratory Failure
- Cardiovascular Failure
- Severe Anemia
- Altitude
- Exercise at Altitude
19Brief History of Everest Climbs
- 8848 m at summit Head of the Sky
- Sir Edmond Hillary and Sherpa Tenzing Norgay
first to climb in 1953 - Messner and Habeler first to climb without oxygen
in 1978 - 2400 individuals have summitted, 210 have died
20Everest The Ultimate Stressor
21Ascent Operation Everest I
22Operation Everest I
- Ascent of Everest in 1981 by American Medical
Research Expedition - 6 mountaineers, 6 climbing scientists, 8
physiologists - Labs at 17, 23 and 26,000 ft
- Alveolar gas samples from the summit PB 253
mm Hg, PIO2 43 mm Hg, PAO2 35 mm Hg, pH
calculated 7.7 - PaO2 28, PaCO2 7.5 mm Hg
23Lab on Western Cwm 6300m
24The South Col
25Operation Everest II
- Simulated Ascent of Everest in 1985 by 8 healthy
young male volunteers in decompression tank at
Natick Army Labs - Tested at rest and exercise with right heart
catheters A-lines at sea level, 18,000 ft,
simulated summit - Two subjects withdrawn for syncope, confusion.
Complete data on 5.
Sutton JR et al, J Appl Physiol 1988 641309
26(No Transcript)
27Step 1 Ambient Air
- Simulated Summit of Everest
- PIO2 PB (240 mm Hg) 47 mm Hg X 0.22 43 mm
Hg - Major challenge, especially with exercise
- How to Adapt?
28Step 2 Ventilation OE II
PIO2 (mm Hg)
- SL 63 43
- Rest VE l/min 11 21 38
- PaCO2 34 20 11
- PaO2 99 41 30
- O2 uptake 0.35 0.31 0.41
- Exer VE l/min 48 94 185
- (120 watts)PaCO2 38 18 9.6
- PaO2 100 34 28
- O2 uptake 1.8 1.5 1.2
Sutton JR et al, J Appl Physiol 1988 641309
29Key Adaptation Hyperventilation
Sutton JR et al, J Appl Physiol 1988 641309
30Hyperventilation minimizes Hypoxia at Summit of
Everest
Alveolar Air Equation PAO2 PIO2 1.25 X
PaCO2
ALVEOLUS
Hypoventilation ? PaCO2 PAO2 43 1.25 X
9.6 31
f
PAO2 31 PACO2 9.6 mm Hg mm
Hg
Adaptation 1) ? ventilation 2) ? FIO2
CAPILLARY
PaO2 27, PaCO2 9.6
31Step 3 Gas Transfer
- Minimal shunt, V/Q
- Diffusion abnormality related to blood velocity,
but mild - Mild Pulmonary hypertension due to sustained
pulmonary hypoxia with remodeling (mPAP 25, PVR
350 dsc) at PB 282 mm Hg
32Step 4 Cardiovascular
PIO2
- SL 63 43
- Rest CO l/min 6.3 5.0 7.3
- SaO2 98 75 58
- PvO2 35 28 27
- Exer CO l/min 16.1 15 16.5
- SaO2 98 64 51
- PvO2 26 15 14
- Lactate 7.8 4.7 3.4
Sutton JR et al, J Appl Physiol 1988 641309
33Step 4 Cardiovascular/hematological adaptations
PIO2
- SL 63 43
- Rest Weight kg 78 75 75
- Hgb gm 13.5 16 17
- 2,3 DPG 1.7 3.0 3.8
- pH (rest) 7.43 7.53 7.57
Sutton JR et al, J Appl Physiol 1988 641309
34Step 5 Tissue Delivery
- Adaptatons
- Increased capillarity
- Increased mitochondrial density
35Steps in Oxygen Delivery
1 PIO2 (43)
2 (31) Ventilation
4 (27) Circulation
5 (14) Tissue Delivery
3 Gas Txfer
36Summary
- Oxygen delivery is a vital chain of steps that
bring O2 to tissues - These consist of ventilation, gas transfer,
circulation and tissue delivery - Disruptions of steps cause hypoxemia, but
adaptations occur at each step to minimize the O2
decrease - The summit of Everest tests the limits human
adaptation and endurance