Partitioning Integers - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Partitioning Integers

Description:

Partitioning Integers. Sharon Jancha. Dr. Lisa Rome, Mentor. Math Problem. Total 7 crayons ... How many ways can we have 7 crayons using at most 7 colors? 3 2 2 ... – PowerPoint PPT presentation

Number of Views:176
Avg rating:3.0/5.0
Slides: 38
Provided by: mountst
Category:

less

Transcript and Presenter's Notes

Title: Partitioning Integers


1
Partitioning Integers
  • Sharon Jancha
  • Dr. Lisa Rome, Mentor

2
Math Problem
  • Total 7 crayons
  • Some are red
  • Some are blue
  • How many of each could you have?

43
25
61
3
Math Problem
  • Total 7 crayons
  • How many of each color if
  • Three colors?
  • Four colors?
  • Seven colors?
  • How many ways can we have 7 crayons using at most
    7 colors?

322
3211
1 of each color
4
S. Ramanujan
  • From India
  • Born Dec 22, 1887
  • Died Apr 26, 1920
  • Mostly self taught
  • 30 publications since his death

5
Ramanujan and Hardy
  • 1913 1919
  • Partitions
  • Approximating formula

6
Definition
  • Partition function, p(n), is the number of ways
    to write the integer n as a sum of non-negative
    integers less than or equal to n.

7
Examples
8
Example p(5)
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111

p(5) 7
221
9
Visual RepresentationsRectangular Blocks
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111

10
  • Leading Part is a1

11
Example p(5)
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111

12
Partitions sub m
  • The number of partitions of an integer n with no
    part bigger than m.
  • Written as pm(n)

13
Example p3(5)
  • 5
  • 41
  • 32
  • 311
  • 221
  • 2111
  • 11111

p3(5) 5
14
Differences in pm(5)
1

1 2 2 1 1 7 p(5)

15
Differences in pm(4)
1 2 1 1 5 p(4)
16
Differences in pm(3)
1 1 1 3 p(3)
17
Differences in pm(2)
1 1 2 p(2)
18
Differences in pm(1)
1 p(1)
19
Triangle
p(5) 7
1 2 2 1 1 7
20
Triangle
p3(5) 5
1 2 2 1 1 5
21
  • R row number
  • E element number in row

R 4 E 3
1
22
Build 7th Row
  • 2 simple steps
  • Which previous row
  • Sum the correct elements

23
Row 7 1st element
  • Find R E
  • 7 - 1 6
  • Add the first E elements
  • E 1

1
24
Why 1?
  • Element Number Leading part

E 1
25
Row 7 2nd element
  • R 7 and E 2
  • R E 7 2 5
  • Add first E terms

3
26
Why 3?
  • Element Number Leading part

E 2

27
Row 7 3rd element
  • 7 3 4
  • Add first 3 terms

4
28
Row 7 4th element
  • 7 4 3
  • Add first 4
  • terms

3
29
Row 7 5th element
  • 7 5 2
  • Add first 5
  • terms

2
30
Row 7 6th element
  • 7 6 1
  • Add first 6
  • terms

1
31
Row 7 7th element
  • 7 7 0

1
32
Why 1?
  • Element Number Leading part

E 7
33
p(7) ?
34
p(7)
How many ways can 7 crayons be divided into at
most 7 colors?
15
35
Further areas of study
  • Drawn p(1) through p(20)
  • Distinct verses non-distinct partitions
  • Odd and Even partitions
  • Extended triangle
  • Proving patterns within

36
Thank you to
  • My family and friends
  • Dr. Rome, and Prof. Dunlap
  • Faculty, and Staff

37
Questions?
Write a Comment
User Comments (0)
About PowerShow.com