IO Introduction: Storage Devices - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

IO Introduction: Storage Devices

Description:

RAID 3. Sum computed across recovery group to protect against hard disk failures, stored ... Parity Data Bandwidth Array (RAID 3) Parity computed horizontally ... – PowerPoint PPT presentation

Number of Views:66
Avg rating:3.0/5.0
Slides: 21
Provided by: Rand229
Category:

less

Transcript and Presenter's Notes

Title: IO Introduction: Storage Devices


1
I/O Introduction Storage Devices RAID
2
I/O Systems
interrupts
Processor
Cache
Memory - I/O Bus
Main Memory
I/O Controller
I/O Controller
I/O Controller
Graphics
Disk
Disk
Network
3
A Computer System with One Bus Backplane Bus
Backplane Bus
Processor
Memory
I/O Devices
  • A single bus (the backplane bus) is used for
  • Processor to memory communication
  • Communication between I/O devices and memory
  • Advantages Simple and low cost
  • Disadvantages slow and the bus can become a
    major bottleneck
  • Example IBM PC - AT

4
A Two-Bus System
Processor Memory Bus
Processor
Memory
Bus Adaptor
Bus Adaptor
Bus Adaptor
I/O Bus
I/O Bus
I/O Bus
  • I/O buses tap into the processor-memory bus via
    bus adaptors
  • Processor-memory bus mainly for processor-memory
    traffic
  • I/O buses provide expansion slots for I/O
    devices
  • Apple Macintosh-II
  • NuBus Processor, memory, and a few selected I/O
    devices
  • SCCI Bus the rest of the I/O devices

5
A Three-Bus System
Processor Memory Bus
Processor
Memory
Bus Adaptor
I/O Bus
Backplane Bus
I/O Bus
  • A small number of backplane buses tap into the
    processor-memory bus
  • Processor-memory bus is used for processor memory
    traffic
  • I/O buses are connected to the backplane bus
  • Advantage loading on the processor bus is
    greatly reduced

6
Disk History
Data density Mbit/sq. in.
Capacity of Unit Shown Megabytes
1973 1. 7 Mbit/sq. in 140 MBytes
1979 7. 7 Mbit/sq. in 2,300 MBytes
source New York Times, 2/23/98, page C3,
Makers of disk drives crowd even more data into
even smaller spaces
7
Disk History
1989 63 Mbit/sq. in 60,000 MBytes
1997 1450 Mbit/sq. in 2300 MBytes
1997 3090 Mbit/sq. in 8100 MBytes
source New York Times, 2/23/98, page C3,
Makers of disk drives crowd even mroe data into
even smaller spaces
8
1 inch disk drive!
  • 2000 IBM MicroDrive
  • 1.7 x 1.4 x 0.2
  • 1 GB, 3600 RPM, 5 MB/s, 15 ms seek
  • Digital camera, PalmPC?
  • 2006 MicroDrive?
  • 9 GB, 50 MB/s!
  • Assuming it finds a niche in a successful
    product
  • Assuming past trends continue

9
Use Arrays of Small Disks?
  • Katz and Patterson asked in 1987
  • Can smaller disks be used to close gap in
    performance between disks and CPUs?

Conventional 4 disk designs
10
5.25
3.5
14
High End
Low End
Disk Array 1 disk design
3.5
10
Array Reliability
  • Reliability of N disks Reliability of 1 Disk
    N
  • 50,000 Hours 70 disks 700 hours
  • Disk system MTTF Drops from 6 years to 1
    month!
  • Arrays (without redundancy) too unreliable to
    be useful!

Hot spares support reconstruction in parallel
with access very high media availability can be
achieved
11
Redundant Arrays of (Inexpensive) Disks
  • Files are "striped" across multiple disks
  • Redundancy yields high data availability
  • Availability service still provided to user,
    even if some components failed
  • Disks will still fail
  • Contents reconstructed from data redundantly
    stored in the array
  • ? Capacity penalty to store redundant info
  • ? Bandwidth penalty to update redundant info

12
Redundant Arrays of Inexpensive DisksRAID 1
Disk Mirroring/Shadowing
recovery group
  •  Each disk is fully duplicated onto its mirror
  • Very high availability can be achieved
  • Bandwidth sacrifice on write
  • Logical write two physical writes
  • Reads may be optimized
  • Most expensive solution 100 capacity overhead
  • (RAID 2 not interesting, so skip)

13
Redundant Array of Inexpensive Disks RAID 3
Parity Disk
P contains sum of other disks per stripe mod 2
(parity) If disk fails, subtract P from sum of
other disks to find missing information
14
RAID 3
  • Sum computed across recovery group to protect
    against hard disk failures, stored in P disk
  • Logically, a single high capacity, high transfer
    rate disk good for large transfers
  • Wider arrays reduce capacity costs, but decreases
    availability
  • 33 capacity cost for parity in this configuration

15
Inspiration for RAID 5
  • Small writes (write to one disk)
  • Option 1 read other data disks, create new sum
    and write to Parity Disk
  • Option 2 since P has old sum, compare old data
    to new data, add the difference to P
  • Small writes are limited by Parity Disk Write to
    D0, D5 both also write to P disk

16
Redundant Arrays of Inexpensive Disks RAID 5
High I/O Rate Interleaved Parity
Increasing Logical Disk Addresses
D0
D1
D2
D3
P
Independent writes possible because
of interleaved parity
D4
D5
D6
P
D7
D8
D9
P
D10
D11
D12
P
D13
D14
D15
Example write to D0, D5 uses disks 0, 1, 3, 4
P
D16
D17
D18
D19
D20
D21
D22
D23
P
. . .
. . .
. . .
. . .
. . .
Disk Columns
17
Problems of Disk Arrays Small Writes
RAID-5 Small Write Algorithm
1 Logical Write 2 Physical Reads 2 Physical
Writes
D0
D1
D2
D3
D0'
P
old data
new data
old parity
(1. Read)
(2. Read)
XOR


XOR
(3. Write)
(4. Write)
D0'
D1
D2
D3
P'
18
System Availability Orthogonal RAIDs
Array Controller
String Controller
. . .
String Controller
. . .
String Controller
. . .
String Controller
. . .
String Controller
. . .
String Controller
. . .
Data Recovery Group unit of data redundancy
Redundant Support Components fans, power
supplies, controller, cables
End to End Data Integrity internal parity
protected data paths
19
System-Level Availability
host
host
Fully dual redundant
I/O Controller
I/O Controller
Array Controller
Array Controller
. . .
. . .
. . .
Goal No Single Points of Failure
. . .
. . .
. . .
with duplicated paths, higher performance can
be obtained when there are no failures
Recovery Group
20
Summary RAID Techniques Goal was performance,
popularity due to reliability of storage
1 0 0 1 0 0 1 1
1 0 0 1 0 0 1 1
Disk Mirroring, Shadowing (RAID 1)
Each disk is fully duplicated onto its "shadow"
Logical write two physical writes 100
capacity overhead
1 0 0 1 0 0 1 1
0 0 1 1 0 0 1 0
1 1 0 0 1 1 0 1
1 0 0 1 0 0 1 1
Parity Data Bandwidth Array (RAID 3)
Parity computed horizontally Logically a single
high data bw disk
High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks Independent reads and
writes Logical write 2 reads 2 writes
Write a Comment
User Comments (0)
About PowerShow.com